A 15 kVA, Three-Phase Triport - A New Approach to UPS

Author(s):  
Charles W. Boettcher
Keyword(s):  
10.14311/1606 ◽  
2012 ◽  
Vol 52 (4) ◽  
Author(s):  
Ioan-Lucian Marcu ◽  
Daniel-Vasile Banyai

This paper presents a new approach to rotary hydraulic systems, and the functional principles of rotary hydraulic systems that can work using alternating flows. Hydraulic transmissions using alternating flows are based on bidirectional displacement of a predefined volume of fluid through the connection pipes between the alternating flow, the pressure energy generator and the motor. The paper also presents some considerations regarding the basic calculation formulas, the design and testing principles for a hydraulic motor driven by alternating flow, and also a three-phase rotary hydraulic motor.


2013 ◽  
Vol 569-570 ◽  
pp. 481-488
Author(s):  
Jin Jiang Wang ◽  
Robert X. Gao ◽  
Ru Qiang Yan

This paper presents a new approach for bearing defect diagnosis in induction motor by taking advantage of three-phase stator current analysis based on Concordia transform. The current signature caused by bearing defect is firstly analyzed using an analytic model. Concordia transform is performed to extract the instantaneous frequency based on phase demodulation. The bearing defect feature is then identified via spectrum analysis of the variation of current instantaneous frequency. Both simulation and experimental studies are performed to demonstrate the effectiveness of proposed method in identifying bearing defects. The method is inherently low cost, non-invasive, and computational efficient, making it a good candidate for various applications.


1977 ◽  
Vol 10 (10) ◽  
pp. 265-272
Author(s):  
P. Miljanić ◽  
D. Srajber ◽  
R. Milijanović
Keyword(s):  

Author(s):  
Elmotaz Billa Elghali ◽  
Marayati Marsadek ◽  
Agileswari K. Ramasamy

This paper presents a new approach to determine the risk of transient stability. It describes the implementation of rotor trajectory index (RTI) to assess the severity of power systems when it is subjected to a three-phase fault. The (RTI) is proposed as an index used to represent severity of transient instability. Risk of transient stability for three-phase fault is calculated using a well-known risk formula. Risk of transient stability provides a quantitative measure to evaluate the potential loss of synchronism of a generator that takes into account the probability and consequences. RTI index is calculated based on the machines rotor angles obtained at each step of a time domain simulation. RTI is proposed as an index to show the severity of the three-phase fault towards transient stability since it allows a fast and accurate measurement of the degree of stability of the system facing a fault. The proposed technique is implemented on the IEEE 39-bus system.


Sign in / Sign up

Export Citation Format

Share Document