scholarly journals Decomposing Partial Order Execution Graphs to Improve Message Race Detection

Author(s):  
Basile Schaeli ◽  
Sebastian Gerlach ◽  
Roger D. Hersch
Author(s):  
Daniel Schemmel ◽  
Julian Büning ◽  
César Rodríguez ◽  
David Laprell ◽  
Klaus Wehrle

2019 ◽  
Vol 7 (1) ◽  
pp. 424-430
Author(s):  
A. George Louis Raja ◽  
F. Sagayaraj Francis ◽  
P. Sugumar
Keyword(s):  

2019 ◽  
Vol 44 (4) ◽  
pp. 18-18 ◽  
Author(s):  
Egor Namakonov ◽  
Eric Mercer ◽  
Pavel Parizek ◽  
Kyle Storey

Author(s):  
Heather M Russell ◽  
Julianna Tymoczko

Abstract Webs are planar graphs with boundary that describe morphisms in a diagrammatic representation category for $\mathfrak{sl}_k$. They are studied extensively by knot theorists because braiding maps provide a categorical way to express link diagrams in terms of webs, producing quantum invariants like the well-known Jones polynomial. One important question in representation theory is to identify the relationships between different bases; coefficients in the change-of-basis matrix often describe combinatorial, algebraic, or geometric quantities (e.g., Kazhdan–Lusztig polynomials). By ”flattening” the braiding maps, webs can also be viewed as the basis elements of a symmetric group representation. In this paper, we define two new combinatorial structures for webs: band diagrams and their one-dimensional projections, shadows, which measure depths of regions inside the web. As an application, we resolve an open conjecture that the change of basis between the so-called Specht basis and web basis of this symmetric group representation is unitriangular for $\mathfrak{sl}_3$-webs ([ 33] and [ 29].) We do this using band diagrams and shadows to construct a new partial order on webs that is a refinement of the usual partial order. In fact, we prove that for $\mathfrak{sl}_2$-webs, our new partial order coincides with the tableau partial order on webs studied by the authors and others [ 12, 17, 29, 33]. We also prove that though the new partial order for $\mathfrak{sl}_3$-webs is a refinement of the previously studied tableau order, the two partial orders do not agree for $\mathfrak{sl}_3$.


2015 ◽  
Vol 50 (6) ◽  
pp. 250-259 ◽  
Author(s):  
Naling Zhang ◽  
Markus Kusano ◽  
Chao Wang

2018 ◽  
Vol 53 (4) ◽  
pp. 374-389 ◽  
Author(s):  
Jake Roemer ◽  
Kaan Genç ◽  
Michael D. Bond
Keyword(s):  

2021 ◽  
Vol 82 (2) ◽  
Author(s):  
Robin Hirsch ◽  
Jaš Šemrl

AbstractThe motivation for using demonic calculus for binary relations stems from the behaviour of demonic turing machines, when modelled relationally. Relational composition (; ) models sequential runs of two programs and demonic refinement ($$\sqsubseteq $$ ⊑ ) arises from the partial order given by modeling demonic choice ($$\sqcup $$ ⊔ ) of programs (see below for the formal relational definitions). We prove that the class $$R(\sqsubseteq , ;)$$ R ( ⊑ , ; ) of abstract $$(\le , \circ )$$ ( ≤ , ∘ ) structures isomorphic to a set of binary relations ordered by demonic refinement with composition cannot be axiomatised by any finite set of first-order $$(\le , \circ )$$ ( ≤ , ∘ ) formulas. We provide a fairly simple, infinite, recursive axiomatisation that defines $$R(\sqsubseteq , ;)$$ R ( ⊑ , ; ) . We prove that a finite representable $$(\le , \circ )$$ ( ≤ , ∘ ) structure has a representation over a finite base. This appears to be the first example of a signature for binary relations with composition where the representation class is non-finitely axiomatisable, but where the finite representation property holds for finite structures.


Sign in / Sign up

Export Citation Format

Share Document