Risk-Aware Submodular Optimization for Stochastic Travelling Salesperson Problem

Author(s):  
Rishab Balasubramanian ◽  
Lifeng Zhou ◽  
Pratap Tokekar ◽  
P. B. Sujit
Author(s):  
Kai Han ◽  
Shuang Cui ◽  
Tianshuai Zhu ◽  
Enpei Zhang ◽  
Benwei Wu ◽  
...  

Data summarization, i.e., selecting representative subsets of manageable size out of massive data, is often modeled as a submodular optimization problem. Although there exist extensive algorithms for submodular optimization, many of them incur large computational overheads and hence are not suitable for mining big data. In this work, we consider the fundamental problem of (non-monotone) submodular function maximization with a knapsack constraint, and propose simple yet effective and efficient algorithms for it. Specifically, we propose a deterministic algorithm with approximation ratio 6 and a randomized algorithm with approximation ratio 4, and show that both of them can be accelerated to achieve nearly linear running time at the cost of weakening the approximation ratio by an additive factor of ε. We then consider a more restrictive setting without full access to the whole dataset, and propose streaming algorithms with approximation ratios of 8+ε and 6+ε that make one pass and two passes over the data stream, respectively. As a by-product, we also propose a two-pass streaming algorithm with an approximation ratio of 2+ε when the considered submodular function is monotone. To the best of our knowledge, our algorithms achieve the best performance bounds compared to the state-of-the-art approximation algorithms with efficient implementation for the same problem. Finally, we evaluate our algorithms in two concrete submodular data summarization applications for revenue maximization in social networks and image summarization, and the empirical results show that our algorithms outperform the existing ones in terms of both effectiveness and efficiency.


2021 ◽  
pp. 1-22
Author(s):  
Yongbo Chen ◽  
Liang Zhao ◽  
Yanhao Zhang ◽  
Shoudong Huang ◽  
Gamini Dissanayake

2019 ◽  
Vol 65 (1) ◽  
pp. 664-675 ◽  
Author(s):  
Gal Shulkind ◽  
Stefanie Jegelka ◽  
Gregory W. Wornell

2011 ◽  
Vol 1 (1) ◽  
pp. 88-92
Author(s):  
Pallavi Arora ◽  
Harjeet Kaur ◽  
Prateek Agrawal

Ant Colony optimization is a heuristic technique which has been applied to a number of combinatorial optimization problem and is based on the foraging behavior of the ants. Travelling Salesperson problem is a combinatorial optimization problem which requires that each city should be visited once. In this research paper we use the K means clustering technique and Enhanced Ant Colony Optimization algorithm to solve the TSP problem. We show a comparison of the traditional approach with the proposed approach. The simulated results show that the proposed algorithm is better compared to the traditional approach.


Perception ◽  
10.1068/p3416 ◽  
2003 ◽  
Vol 32 (7) ◽  
pp. 871-886 ◽  
Author(s):  
Douglas Vickers ◽  
Pierre Bovet ◽  
Michael D Lee ◽  
Peter Hughes

The planar Euclidean version of the travelling salesperson problem (TSP) requires finding a tour of minimal length through a two-dimensional set of nodes. Despite the computational intractability of the TSP, people can produce rapid, near-optimal solutions to visually presented versions of such problems. To explain this, MacGregor et al (1999, Perception28 1417–1428) have suggested that people use a global-to-local process, based on a perceptual tendency to organise stimuli into convex figures. We review the evidence for this idea and propose an alternative, local-to-global hypothesis, based on the detection of least distances between the nodes in an array. We present the results of an experiment in which we examined the relationships between three objective measures and performance measures of optimality and response uncertainty in tasks requiring participants to construct a closed tour or an open path. The data are not well accounted for by a process based on the convex hull. In contrast, results are generally consistent with a locally focused process based initially on the detection of nearest-neighbour clusters. Individual differences are interpreted in terms of a hierarchical process of constructing solutions, and the findings are related to a more general analysis of the role of nearest neighbours in the perception of structure and motion.


Sign in / Sign up

Export Citation Format

Share Document