Current differencing transconductance amplifier based current-mode quadrature oscillator using grounded capacitors

Author(s):  
Tosapol Bumrongchoke ◽  
Danupat Duangmalai ◽  
Winai Jaikla
2011 ◽  
Vol 20 (02) ◽  
pp. 185-206 ◽  
Author(s):  
WORAPONG TANGSRIRAT ◽  
TATTAYA PUKKALANUN ◽  
WANLOP SURAKAMPONTORN

A synthesis of analog current limiter (CL) building blocks based on a current differencing transconductance amplifier (CDTA) is proposed. The breakpoint and the slope of the resulting transfer characteristic obtained from the proposed CDTA-based CL are electronically programmable through the external bias currents. To demonstrate versatility of the proposed electronically tunable CLs, some nonlinear applications to programmable current-mode precision full-wave rectifiers and piecewise-linear function approximation generators are also presented. PSPICE simulation and experimental results confirm the effectiveness of the proposed circuits.


2012 ◽  
Vol 60 (4) ◽  
pp. 739-750 ◽  
Author(s):  
A. Malcher

Abstract This paper introduces a new current mode component called Modified Current Differencing Transconductance Amplifier (MCDTA). Important parameters of the circuit i.e. input resistance, z terminal resistance and transconductance of the output stage can be tuned electrically. The circuit can be implemented in linear and non-linear analog signal processing. The paper presents an example of the MCDTA application - a complete quadrature oscillator with the amplitude regulation. The functionality of the example circuit and its tuning capability were proved by the SPICE simulation results.


2015 ◽  
Vol 15 (4) ◽  
pp. 184-195 ◽  
Author(s):  
Predrag B. Petrović

Abstract A current-mode bipolar power detector based on a novel synthesis of translinear loop squarer/divider is presented. The circuits consist of a single multiple-output current controlled current differencing transconductance amplifier (MO-CCCDTA), two current controlled conveyors (CCCII), and one resistor and one capacitor that are both grounded. The errors related to the signal processing and errors bound were investigated and presented in the paper. The PSpice simulation and experimental results are depicted, and agree well with the theoretical anticipation. The measurement results show that the scheme improves the accuracy of the detector to better than 0.04 % and wide operating frequency range from 50 Hz to 10 MHz. The maximum power consumption of the detector is approximately 5.80 mW, at ±1.2 V supply voltages.


Sign in / Sign up

Export Citation Format

Share Document