active element
Recently Published Documents


TOTAL DOCUMENTS

510
(FIVE YEARS 103)

H-INDEX

29
(FIVE YEARS 3)

Author(s):  
Stefan Ionita ◽  
Stefan Velicu

The main objective of the research paper is the theoretical and experimental analysis of the method proposed for sealing (clogging) cracks in asphalt, by means of a cylindrical bitumen bar, enriched with plastic and rubber granules (obtained from the use of waste), which melts and infuses into the cracked zone by rotation and friction against it. After analyzing the technical characteristics of the sealed area and the time required to apply the bitumen layer, this method can be chosen in the future to the detriment of the expensive operations of partial milling of the cracked wear layer, making possible the repair of cracks by sealing(clogging), using the friction procedure. The research results highlighted the diminution of road maintenance costs using the method of friction, the decrease of cracks repair time, maintaining the initial characteristics of the repaired area, incorporating a waterproofing material (plastic and rubbber granules from recycled waste), keeping the wear layer in good conditions, possibility of embedding an intelligent system of traffic monitoring at low costs etc.


Geoderma ◽  
2022 ◽  
Vol 408 ◽  
pp. 115580
Author(s):  
Duyen Minh Pham ◽  
Hiroshi Oji ◽  
Shinya Yagi ◽  
Satoshi Ogawa ◽  
Arata Katayama

Author(s):  
Ya Yang ◽  
Jing Lu ◽  
Lan Zhou

Abstract Quantum router is one of the essential elements in the quantum network. Conventional routers only direct a single photon from one quantum channel into another. Here, we proposed a few-photon router. The active element of the router is a single qubit chirally coupled to two independent waveguides simultaneously, where each waveguide mode provides a quantum channel. By introducing the operators of the scatter-free space and the controllable space, the output state of the one-photon and two-photon scattering are derived analytically. It is found that the qubit can direct one and two photons from one port of the incident waveguide to an arbitrarily selected port of the other waveguide with unity, respectively. However, two photons cannot be simultaneously routed to the same port due to the anti-bunch effect.


Author(s):  
V. E. Kisel ◽  
N. V. Kuleshov ◽  
A. S. Yasukevich

Herein, we report on the mathematical modelling and experimental study of the regime of nonsoliton mode locking in a laser based on the Yb3+:LuAlO3 (Yb:LuAP) crystal with longitudinal pumping by laser diode radiation. Simulation based on the Haus master equation permitted to determine the requirements for the parameters of a saturable absorber (SA), the level of the average output power, the size of the TEM00 mode of the cavity in the active element and on the gate to obtain a stable regime of generation of picosecond laser pulses. Laser experiments were carried out in a fourmirror X-shaped resonator using a semiconductor saturable mirror (SESAM) as a passive modulator and a laser diode with a fiber output of a maximum power up to 30 W at a wavelength of 978.5 nm as a pump source. We obtained a stable passive mode locking with a maximum average output power of up to 12 W and an ultrashort pulse duration of about 2 ps at an optical conversion efficiency of pump radiation into lasing radiation of about 38 %. Laser pulses were obtained at a central wavelength of about 999 nm with a minimum Stokes shift (about 2 %) with respect to the pump radiation, which significantly reduced the thermal load on the active element. Additionally, the preliminary results on the second harmonic generation and synchronous pumping of a parametric light generator using a Yb3+ : LuAlO3 crystal laser as a pump source are presented.


Author(s):  
T. N. Kapetanakis ◽  
C. D. Nikolopoulos ◽  
C. Petridis ◽  
I. O. Vardiambasis

The design and fabrication of graphene based textile patch antennas, intended for use in the 2.45GHz ISM band, are presented. The antennas have simple geometries with rectangular, triangular, or circular shape and substrate materials made of four different fabrics suitable for wearable applications. Conductive graphene sheet is used for the active element patches of the twelve different proposed prototypes. The effects of the antenna geometry, the substrate selection and the graphene-textile fabrication process on the prototypes’ performance are studied. Several prototypes exhibit desirable characteristics, such as high gain, acceptable radiation pattern, low Specific Absorption Rate (SAR), relatively wide bandwidth, and coverage of the ISM band even under different bending conditions.


2021 ◽  
Author(s):  
Yi-Shi Liu ◽  
Yicheng Wang ◽  
Xiaoman Zhou ◽  
LinPei Zhang ◽  
Ganglong Yang ◽  
...  

Abstract We previously reported that glycosylphosphatidylinositol (GPI) biosynthesis is regulated by endoplasmic reticulum associated degradation (ERAD); however, the underlying mechanistic basis remains unclear. Based on a genome-wide CRISPR–Cas9 screen, we show that a widely expressed GPI-anchored protein CD55 precursor and ER-resident ARV1 together upregulate GPI biosynthesis under ERAD-deficient conditions. In cells defective in GPI transamidase, GPI-anchored protein precursors fail to obtain GPI, remaining the uncleaved GPI-attachment signal at the C-termini. We show that ERAD deficiency causes accumulation of the CD55 precursor, which in turn upregulates GPI biosynthesis, where the GPI-attachment signal peptide is the active element. Among the 32 GPI-anchored proteins tested, only the GPI-attachment signal peptides of CD55 and CD48 enhance GPI biosynthesis. ARV1 is essential for the GPI upregulation by CD55 precursor. Our data demonstrate an ARV1-dependent regulatory connection between GPI biosynthesis and precursors of select GPI-anchored proteins that are under the control of ERAD.


2021 ◽  
Vol 11 (21) ◽  
pp. 10440
Author(s):  
Yu-Kai Sun ◽  
Shih-Ying Chang ◽  
Lung-Chuan Tsao ◽  
Tung-Han Chuang ◽  
Guo-Zhan Zhang ◽  
...  

In this study, AA6061/AA6061 and AA6061/alumina were directly brazed with Al10.8Si10Cu, Al10Si10Cu4Ti and Al10Si10Cu4Ti0.1RE filler alloys at 530 °C for 10 min without the use of flux. The addition of titanium and rare-earth elements into Al10.8Si10Cu alloy effectively improved the bonding shear strengths of AA6061/AA6061 and AA6061/alumina joints. The highest joint shear strengths were 61.1 and 19.2 MPa, respectively. The Al10.8Si10Cu filler alloy without titanium and rare-earth elements could not wet on the alumina and caused failure of the AA6061/alumina joint. The shear strengths of the AA6061/AA6061 and AA6061/alumina joints both strongly depended on the active element addition. Due to the high chemical activity of the rare-earth elements, they formed AlLa between the Al10Si10Cu4Ti0.1RE filler alloy and alumina. The addition of rare-earth elements into Al10Si10Cu4Ti filler alloy resulted in significant enhancement of the average bond strength of AA6061/alumina joints, from 8.0 to 14.8 MPa.


Author(s):  
Kapil Bhardwaj ◽  
Mayank Srivastava

The work endeavors to realize a single Voltage Differencing Current Conveyor (VDCC)-based current-controlled memristor emulator with charge-dependent linear memristance function. Such current-controlled memristors closely model the current ([Formula: see text])–voltage ([Formula: see text]) relationship of the popular TiO2-based physical memristor architecture constructed by Hewlett–Packard (HP). The presented emulator circuit comprises only two grounded passive elements and two external MOS transistors along with a VDCC active element and provides the facility of electronic/resistive tunability. It is found through the detailed literature survey that the presented circuit is the most compact design to realize a charge-controlled memristance simulator as compared to any previously reported structure. The designed configuration has been verified through presented simulation results generated using PSPICE based on 0.18[Formula: see text][Formula: see text]m CMOS technology. It has also been validated through relaxation and chaotic oscillators developed using the proposed VDCC-based memristor emulator and output waveforms have been shown. Furthermore, the discussed memristor emulator has been implemented and verified through commercial ICs, AD844 and LM13700.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012190
Author(s):  
V V Toporovsky ◽  
A V Kudryashov ◽  
V V Samarkin ◽  
A A Panich ◽  
A I Sokallo ◽  
...  

Abstract Deformable mirror (DM) is an active element that can change the shape of the surface to compensate for wavefront aberrations. Historically, the development of DMs started from piezostack deformable mirrors (PDM) due to their large stroke, flexibility in actuators geometry, high resonant frequency. However, the cost of PDMs is comparatively high because of their labor-intensive process of manufacturing. In the article innovative design of PDM is presented. The assembling of unconventional PDMs was carried out using piezoceramic combs. This step should allow to decrease number of technological steps, increase spatial resolution of the mirror and thereby reduce the cost of final product.


Sign in / Sign up

Export Citation Format

Share Document