A current mode Schmitt trigger based on Current Differencing Transconductance Amplifier

Author(s):  
T. Srivyshnavi ◽  
Avireni Srinivasulu
2015 ◽  
Vol 15 (4) ◽  
pp. 184-195 ◽  
Author(s):  
Predrag B. Petrović

Abstract A current-mode bipolar power detector based on a novel synthesis of translinear loop squarer/divider is presented. The circuits consist of a single multiple-output current controlled current differencing transconductance amplifier (MO-CCCDTA), two current controlled conveyors (CCCII), and one resistor and one capacitor that are both grounded. The errors related to the signal processing and errors bound were investigated and presented in the paper. The PSpice simulation and experimental results are depicted, and agree well with the theoretical anticipation. The measurement results show that the scheme improves the accuracy of the detector to better than 0.04 % and wide operating frequency range from 50 Hz to 10 MHz. The maximum power consumption of the detector is approximately 5.80 mW, at ±1.2 V supply voltages.


Author(s):  
B.T. Krishna ◽  
◽  
Shaik. mohaseena Salma ◽  

A flux-controlled memristor using complementary metal–oxide–(CMOS) structure is presented in this study. The proposed circuit provides higher power efficiency, less static power dissipation, lesser area, and can also reduce the power supply by using CMOS 90nm technology. The circuit is implemented based on the use of a second-generation current conveyor circuit (CCII) and operational transconductance amplifier (OTA) with few passive elements. The proposed circuit uses a current-mode approach which improves the high frequency performance. The reduction of a power supply is a crucial aspect to decrease the power consumption in VLSI. An offered emulator in this proposed circuit is made to operate incremental and decremental configurations well up to 26.3 MHZ in cadence virtuoso platform gpdk using 90nm CMOS technology. proposed memristor circuit has very little static power dissipation when operating with ±1V supply. Transient analysis, memductance analysis, and dc analysis simulations are verified practically with the Experimental demonstration by using ideal memristor made up of ICs AD844AN and CA3080, using multisim which exhibits theoretical simulation are verified and discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Worapong Tangsrirat

This paper describes the conception of the current follower transconductance amplifier (CFTA) with electronically and linearly current tunable. The newly modified element is realized based on the use of transconductance cells (Gms) as core circuits. The advantage of this element is that the current transfer ratios (iz/ipandix/iz) can be tuned electronically and linearly by adjusting external DC bias currents. The circuit is designed and analyzed in 0.35 μm TSMC CMOS technology. Simulation results for the circuit with ±1.25 V supply voltages show that it consumes only 0.43 mw quiescent power with 70 MHz bandwidth. As an application example, a current-mode KHN biquad filter is designed and simulated.


2011 ◽  
Vol 20 (02) ◽  
pp. 185-206 ◽  
Author(s):  
WORAPONG TANGSRIRAT ◽  
TATTAYA PUKKALANUN ◽  
WANLOP SURAKAMPONTORN

A synthesis of analog current limiter (CL) building blocks based on a current differencing transconductance amplifier (CDTA) is proposed. The breakpoint and the slope of the resulting transfer characteristic obtained from the proposed CDTA-based CL are electronically programmable through the external bias currents. To demonstrate versatility of the proposed electronically tunable CLs, some nonlinear applications to programmable current-mode precision full-wave rectifiers and piecewise-linear function approximation generators are also presented. PSPICE simulation and experimental results confirm the effectiveness of the proposed circuits.


A vast number of diverse analog circuit blocks have been arosed in the past few decades. A various active devices are Operational Amplifier (Op-Amp), Current Conveyor (CC), Operational Transconductance Amplifier (OTA), Differential Difference Current Conveyor (DDCC), Differential Difference Current Conveyor Transconductnace Amplifier (DDCCTA), Z-Copy Current Differencing Transconductance Amplifier (ZC-CDTA), Voltage Difference Transconductance Amplifier (VDTA) and so on. A review on Schmitt trigger circuits by using different active devices are presented in this paper since Schmitt trigger circuits are widely used in numerous applications such as in waveform generators, wave-shaping circuits, comparators, Bio-medical applications, analog processing systems, communication and instrumentation systems.


2012 ◽  
Vol 60 (4) ◽  
pp. 739-750 ◽  
Author(s):  
A. Malcher

Abstract This paper introduces a new current mode component called Modified Current Differencing Transconductance Amplifier (MCDTA). Important parameters of the circuit i.e. input resistance, z terminal resistance and transconductance of the output stage can be tuned electrically. The circuit can be implemented in linear and non-linear analog signal processing. The paper presents an example of the MCDTA application - a complete quadrature oscillator with the amplitude regulation. The functionality of the example circuit and its tuning capability were proved by the SPICE simulation results.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Neeta Pandey ◽  
Sajal K. Paul

A universal voltage-mode filter (VM) and a current-mode filter (CM) based on recently proposed active building block, namely, differential voltage current conveyor transconductance amplifier (DVCCTA) are proposed. Both the circuits use a single DVCCTA, two capacitors, and a single resistor. The filters enjoy low-sensitivity performance and low component spread and exhibit electronic tunability of filter parameters via bias currents of DVCCTA. SPICE simulation using 0.25 μm TSMC CMOS technology parameters is included to show the workability of the proposed circuits.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Neeta Pandey ◽  
Sajal K. Paul

A new active building block for analog signal processing, namely, differential difference current conveyor transconductance amplifier (DDCCTA), is presented, and performance is checked through PSPICE simulations which show the usability of the proposed element is up to 201 MHz. The proposed block is implemented using 0.25 μm TSMC CMOS technology. Some of the applications are presented using the proposed DDCCTA, namely, a voltage mode multifunction filter, a current mode universal filter, an oscillator, current and voltage amplifiers, and grounded inductor simulator. The feasibility of DDCCTA and its applications is confirmed via PSPICE simulations.


Sign in / Sign up

Export Citation Format

Share Document