The integrated control strategy for primary frequency control of DFIGs based on virtual inertia and pitch control

Author(s):  
Pengfei Li ◽  
Weihao Hu ◽  
Rui Hu ◽  
Zhe Chen
2020 ◽  
Author(s):  
Mostafa Malekpour ◽  
Arash Kiyoumarsi ◽  
Mehdi Gholipour

This paper proposes an efficient adaptive strategy to control virtual inertia of virtual synchronous generators. This adaptive virtual inertia can provide low frequency oscillation damping and simultaneously improve primary frequency control in power systems. <br>


2014 ◽  
Vol 1070-1072 ◽  
pp. 319-326
Author(s):  
Zhi Xu ◽  
Hong Tao Wang ◽  
Cheng Ming He

For the rotor speed of variable speed wind turbine (VSWT) is decoupled from system frequency, the system equivalent rotary inertia and primary frequency control ability are decreased with wind power penetration growing continuously. To solve the problems, VSWT with additional frequency control was studied. The dynamic characteristics of input and output power of VSWT during participating in system frequency regulation are analyzed. The relationships between the active power increments and the duration of VSWT participating frequency control are quantified. A coordination frequency control strategy base on time sequence control is proposed. According to the control strategy, the VSWTs can participate in frequency regulation depending on the coordination of wind speed, power increments and duration. The simulation results demonstrate the effectiveness of the proposed control strategy, which can make full use of the frequency regulation ability of VSWTs as well as minimize the negative effects on system frequency.


Author(s):  
Issam Minka ◽  
Ahmed Essadki ◽  
Sara Mensou ◽  
Tamou Nasser

<span lang="EN-US">In this paper, we study the primary frequency control that allows the variable speed Aeolian to participate in the frequency regulation when a failure affects the network frequency. This method based on the control of the generator rotational speed or the control of pitch angle makes it possible to force the wind turbine to produce less power than its maximum available power, consequently we will create an active power reserve. This wind turbine must inject into the grid a part of its power reserve when the frequency drops, in contrary the wind turbine reserves more of energy. So, this work presents the performances of this control strategy for the different wind speed value. The results are obtained by a simulation in the MATLAB/SIMULINK environment.</span>


2020 ◽  
Author(s):  
Mostafa Malekpour ◽  
Arash Kiyoumarsi ◽  
Mehdi Gholipour

This paper proposes an efficient adaptive strategy to control virtual inertia of virtual synchronous generators. This adaptive virtual inertia can provide low frequency oscillation damping and simultaneously improve primary frequency control in power systems. <br>


Sign in / Sign up

Export Citation Format

Share Document