scholarly journals Universal Construction of Cheater-Identifiable Secret Sharing Against Rushing Cheaters Based on Message Authentication

Author(s):  
Masahito Hayashi ◽  
Takeshi Koshiba
2002 ◽  
Vol 2 (1) ◽  
pp. 14-34
Author(s):  
D. W. Leung

We discuss aspects of secure quantum communication by proposing and analyzing a quantum analog of the Vernam cipher (one-time-pad). The quantum Vernam cipher uses entanglement as the key to encrypt quantum information sent through an insecure quantum channel. First, in sharp contrast with the classical Vernam cipher, the quantum key can be recycled securely. We show that key recycling is intrinsic to the quantum cipher-text, rather than using entanglement as the key. Second, the scheme detects and corrects for arbitrary transmission errors, and it does so using only local operations and classical communication (LOCC) between the sender and the receiver. The application to quantum message authentication is discussed. Quantum secret sharing schemes with similar properties are characterized. We also discuss two general issues, the relation between secret communication and secret sharing, the classification of secure communication protocols.


2019 ◽  
Vol 10 (1) ◽  
pp. 189
Author(s):  
Ye Kang ◽  
Ying Guo ◽  
Hai Zhong ◽  
Guojun Chen ◽  
Xiaojun Jing

The dishonest participants have many advantages to gain others’ shares by cheating in quantum secret sharing (QSS) protocols. However, the traditional methods such as identity authentication and message authentication can not resolve this problem due to the reason that the share has already been released to dishonest participants before realizing the deception. In this paper, a continuous variable QSS (CVQSS) scheme is proposed with fairness which ensures all participants can acquire or can not acquire the secret simultaneously. The quantum channel based on two-mode squeezing states provides secure communications through which it can send shares successfully, as long as setting the squeezing and modulation parameters according to the quantum channel transmission efficiency and the Shannon information of shares. In addition, the Chinese Remainder Theorem (CRT) can provides tunable threshold structures according to demands of the complex quantum network and the strategy for fairness can be incorporated with other sharing schemes, resulting in perfect compatibility for practical implementations.


Author(s):  
Shingo HASEGAWA ◽  
Shuji ISOBE ◽  
Jun-ya IWAZAKI ◽  
Eisuke KOIZUMI ◽  
Hiroki SHIZUYA

Sign in / Sign up

Export Citation Format

Share Document