secure communications
Recently Published Documents


TOTAL DOCUMENTS

723
(FIVE YEARS 175)

H-INDEX

36
(FIVE YEARS 9)

Author(s):  
Hayder Mazin Makki Alibraheemi ◽  
Qais Al-Gayem ◽  
Ehab AbdulRazzaq Hussein

<span>This paper presents the design and simulation of a hyperchaotic communication system based on four dimensions (4D) Lorenz generator. The synchronization technique that used between the master/transmitter and the slave/receiver is based on dynamic feedback modulation technique (DFM). The mismatch error between the master dynamics and slave dynamics are calculated continuously to maintain the sync process. The information signal (binary image) is masked (encrypted) by the hyperchaotic sample x of Lorenz generator. The design and simulation of the overall system are carried out using MATLAB Simulink software. The simulation results prove that the system is suitable for securing the plain-data, in particular the image data with a size of 128×128 pixels within 0.1 second required for encryption, and decryption in the presence of the channel noise. The decryption results for gray and colored images show that the system can accurately decipher the ciphered image, but with low level distortion in the image pixels due to the channel noise. These results make the proposed cryptosystem suitable for real time secure communications.</span>


2021 ◽  
Vol 1 (1) ◽  
pp. 112-120
Author(s):  
Aya Y. Khudhair ◽  
Rajaa aldeen A. Khalid

- Direct sequence spread spectrum systems appeared and are used to protect the transmitted data DSSS Systems might be one of the solutions for reliable and secured communications. Also, it is one of the approaches used by signals for transmitting bandwidth larger compared to the satisfied frequency related to the original information. The communication systems of SS were vital to suppress interference, complicating the detection and processing of secure communications, the technology of spread spectrum (DSSS) has been initially created for military applications. In a traditional DSSS system, the PN code is the primary key to make the receiver recover the transmitted data. In this paper, by using the MATLAB R2020a is used to simulate the proposed system, it is considered that the transmitter sends data bits and wants to protect the sent data by making each bit send with a PN code consisting of 127 bits randomly without informing the receiver of that. here the artificial neural network (ANN) was used as a tool to find the PN code for each initial value of 7 flip-flops. so, the receiver could detect the transmitted data with BER =0.


Author(s):  
Sagarmoy Ganguly ◽  
Asoke Nath

Quantum cryptography is a comparatively new and special type of cryptography which uses Quantum mechanics to provide unreal protection of data/information and unconditionally secure communications. This is achieved with Quantum Key Distribution (QKD) protocols which is a representation of an essential practical application of Quantum Computation. In this paper the authors will venture the concept of QKD by reviewinghow QKD works, the authors shall take a look at few protocols of QKD, followed by a practical example of Quantum Cryptography using QKD and certain limitations from the perspective of Computer Science in specific and Quantum Physics in general.


Author(s):  
Khadeeja Sabah Jasim ◽  
Khattab M. Ali Alheeti ◽  
Abdul Kareem A. Najem Alaloosy

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8040
Author(s):  
Kisong Lee

In this study, we investigate energy-efficient secure communications for wireless-powered cognitive ratio networks, in which multiple secondary users (SUs) share the same frequency band with primary users (PUs) and energy harvesting (EH) nodes harvest energy from the transmitted signals, even though information decoding is not permitted. To maximize the average secrecy energy efficiency (SEE) of SUs while ensuring acceptable interference on PUs and the required amount of energy for the EH nodes, we propose an energy-efficient transmit power control algorithm using dual decomposition, wherein suboptimal transmit powers are determined in an iterative manner with low complexity. Through extensive simulations in various scenarios, we verify that the proposed scheme has a higher average SEE than conventional schemes and a considerably shorter computation time than the optimal scheme.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7837
Author(s):  
Kisong Lee

In this study, wireless-powered cognitive radio networks (WPCRNs) are considered, in which N sets of transmitters, receivers and energy-harvesting (EH) nodes in secondary networks share the same spectrum with primary users (PUs) and none of the EH nodes is allowed to decode information but can harvest energy from the signals. Given that the EH nodes are untrusted nodes from the point of view of information transfer, the eavesdropping of secret information can occur if they decide to eavesdrop on information instead of harvesting energy from the signals transmitted by secondary users (SUs). For secure communications in WPCRNs, we aim to find the optimal transmit powers of SUs that maximize the average secrecy rate of SUs while maintaining the interference to PUs below an allowable level, while guaranteeing the minimum EH requirement for each EH node. First, we derive an analytical expression for the transmit power via dual decomposition and propose a suboptimal transmit power control algorithm, which is implemented in an iterative manner with low complexity. The simulation results confirm that the proposed scheme outperforms the conventional distributed schemes by more than 10% in terms of the average secrecy rate and outage probability and can also considerably reduce the computation time compared with the optimal scheme.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2088
Author(s):  
Gwo-Ruey Yu ◽  
Yong-Dong Chang ◽  
Chih-Heng Chang

This paper presents the sum of squares (SOS)-based fuzzy control with H∞ performance for a synchronized chaos system and secure communications. To diminish the influence of the extrinsic perturbation, SOS-based stability criteria of the polynomial fuzzy system are derived by using the polynomial Lyapunov function. The perturbation decreasing achievement is indexed in a H∞ criterion. The submitted SOS-based stability criteria are more relaxed than the existing linear matrix inequality (LMI)-based stability criteria. The cryptography scheme based on an n-shift cipher is combined with synchronization for secure communications. Finally, numerical simulations illustrate the perturbation decay accomplishment of the submitted polynomial fuzzy compensator.


2021 ◽  
Author(s):  
Christos Papadopoulos ◽  
Alexander Afanasyev ◽  
Susmit Shannigrahi

Sign in / Sign up

Export Citation Format

Share Document