quantum analog
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 16)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
pp. 2100497
Author(s):  
Zhiqiang Liao ◽  
Kaijie Ma ◽  
Md Shamim Sarker ◽  
Siyi Tang ◽  
Hiroyasu Yamahara ◽  
...  

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 545
Author(s):  
Salvatore Tirone ◽  
Maddalena Ghio ◽  
Giulia Livieri ◽  
Vittorio Giovannetti ◽  
Stefano Marmi

The main purpose of this study is to introduce a semi-classical model describing betting scenarios in which, at variance with conventional approaches, the payoff of the gambler is encoded into the internal degrees of freedom of a quantum memory element. In our scheme, we assume that the invested capital is explicitly associated with the quantum analog of the free-energy (i.e. ergotropy functional by Allahverdyan, Balian, and Nieuwenhuizen) of a single mode of the electromagnetic radiation which, depending on the outcome of the betting, experiences attenuation or amplification processes which model losses and winning events. The resulting stochastic evolution of the quantum memory resembles the dynamics of random lasing which we characterize within the theoretical setting of Bosonic Gaussian channels. As in the classical Kelly Criterion for optimal betting, we define the asymptotic doubling rate of the model and identify the optimal gambling strategy for fixed odds and probabilities of winning. The performance of the model are hence studied as a function of the input capital state under the assumption that the latter belongs to the set of Gaussian density matrices (i.e. displaced, squeezed thermal Gibbs states) revealing that the best option for the gambler is to devote all their initial resources into coherent state amplitude.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 889
Author(s):  
Akram Touil ◽  
Kevin Weber ◽  
Sebastian Deffner

In classical thermodynamics the Euler relation is an expression for the internal energy as a sum of the products of canonical pairs of extensive and intensive variables. For quantum systems the situation is more intricate, since one has to account for the effects of the measurement back action. To this end, we derive a quantum analog of the Euler relation, which is governed by the information retrieved by local quantum measurements. The validity of the relation is demonstrated for the collective dissipation model, where we find that thermodynamic behavior is exhibited in the weak-coupling regime.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
O. M. Sotnikov ◽  
V. V. Mazurenko ◽  
J. Colbois ◽  
F. Mila ◽  
M. I. Katsnelson ◽  
...  
Keyword(s):  

2021 ◽  
Vol 31 (2) ◽  
pp. 189
Author(s):  
Junseo Lee ◽  
Kabgyun Jeong

As the quantum analog of the classical one-time pad, the private quantum channel (PQC) plays a fundamental role in the construction of the maximally mixed state (from any input quantum state), which is very useful for studying secure quantum communications and quantum channel capacity problems. However, the undoubted existence of a relation between the geometric shape of regular polytopes and private quantum channels in the higher dimension has not yet been reported. Recently, it was shown that a one-to-one correspondence exists between single-qubit PQCs and three-dimensional regular polytopes (i.e., regular polyhedra). In this paper, we highlight these connections by exploiting two strategies known as a generalized Gell-Mann matrix and modified quantum Fourier transform. More precisely, we explore the explicit relationship between PQCs over a qutrit system (i.e., a three-level quantum state) and regular 4-polytopes. Finally, we attempt to devise a formula for such connections on higher dimensional cases.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 23
Author(s):  
Michael B. Heaney

The conventional explanation of delayed-choice experiments appears to violate our causal intuition at the quantum level. I reanalyze these experiments using time-reversed and time-symmetric formulations of quantum mechanics. The time-reversed formulation does not give the same experimental predictions. The time-symmetric formulation gives the same experimental predictions but actually violates our causal intuition at the quantum level. I explore the reasons why our causal intuition may be wrong at the quantum level, suggest how conventional causation might be recovered in the classical limit, propose a quantum analog to the classical block universe viewpoint, and speculate on implications of the time-symmetric formulation for cosmological boundary conditions.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1683
Author(s):  
Yuri Suhov ◽  
Mark Kelbert ◽  
Izabella Stuhl

This paper focuses on infinite-volume bosonic states for a quantum particle system (a quantum gas) in Rd. The kinetic energy part of the Hamiltonian is the standard Laplacian (with a boundary condition at the border of a ‘box’). The particles interact with each other through a two-body finite-range potential depending on the distance between them and featuring a hard core of diameter a>0. We introduce a class of so-called FK-DLR functionals containing all limiting Gibbs states of the system. As a justification of this concept, we prove that for d=2, any FK-DLR functional is shift-invariant, regardless of whether it is unique or not. This yields a quantum analog of results previously achieved by Richthammer.


Author(s):  
Shmuel Friedland ◽  
Jingtong Ge ◽  
Lihong Zhi

Strassen’s theorem circa 1965 gives necessary and sufficient conditions on the existence of a probability measure on two product spaces with given support and two marginals. In the case where each product space is finite, Strassen’s theorem is reduced to a linear programming problem which can be solved using flow theory. A density matrix of bipartite quantum system is a quantum analog of a probability matrix on two finite product spaces. Partial traces of the density matrix are analogs of marginals. The support of the density matrix is its range. The analog of Strassen’s theorem in this case can be stated and solved using semidefinite programming. The aim of this paper is to give analogs of Strassen’s theorem to density trace class operators on a product of two separable Hilbert spaces, where at least one of the Hilbert spaces is infinite-dimensional.


2020 ◽  
Author(s):  
Andrew Baczewski ◽  
Mitchell Brickson ◽  
Quinn Campbell ◽  
Noah Jacobson ◽  
Leon Maurer

Sign in / Sign up

Export Citation Format

Share Document