An Endurance-aware RAID-6 Code with Low Computational Complexity and Write Overhead

Author(s):  
Ningjing Liang ◽  
Xingjun Zhang ◽  
Xurui Wu ◽  
Heng Chen ◽  
Changjiang Zhang
2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Ran Li ◽  
Hongbing Liu ◽  
Yu Zeng ◽  
Yanling Li

In the framework of block Compressed Sensing (CS), the reconstruction algorithm based on the Smoothed Projected Landweber (SPL) iteration can achieve the better rate-distortion performance with a low computational complexity, especially for using the Principle Components Analysis (PCA) to perform the adaptive hard-thresholding shrinkage. However, during learning the PCA matrix, it affects the reconstruction performance of Landweber iteration to neglect the stationary local structural characteristic of image. To solve the above problem, this paper firstly uses the Granular Computing (GrC) to decompose an image into several granules depending on the structural features of patches. Then, we perform the PCA to learn the sparse representation basis corresponding to each granule. Finally, the hard-thresholding shrinkage is employed to remove the noises in patches. The patches in granule have the stationary local structural characteristic, so that our method can effectively improve the performance of hard-thresholding shrinkage. Experimental results indicate that the reconstructed image by the proposed algorithm has better objective quality when compared with several traditional ones. The edge and texture details in the reconstructed image are better preserved, which guarantees the better visual quality. Besides, our method has still a low computational complexity of reconstruction.


Author(s):  
LÁSZLÓ T. KÓCZY ◽  
MICHIO SUGENO

Fuzzy control systems have proved their applicability in many areas. Their user-friend-liness and transparency certainly belong to their main advantages, and these two enable developing and tuning such controllers easily, without knowing their exact mathematical description. Nevertheless, it is of interest to know, what mathematical functions hide behind a set of fuzzy rules and an inference machine. For practical purposes it is necessary to consider real, implementable fuzzy control systems with reasonably low computational complexity. This paper discusses the problem of what types of functions are generated by realistic fuzzy control systems. In the paper the explicit formulae of the transference functions for practically important special cases are determined, controllers having rules with triangular and trapezoidal membership functions, and crisp consequents. Here we restrict our investigations to rules with a single input.


Sign in / Sign up

Export Citation Format

Share Document