Open Set Recognition Using the Feature Space of Deep Neural Networks

Author(s):  
Daiju Kanaoka ◽  
Yuichiro Tanaka ◽  
Hakaru Tamukoh
Author(s):  
Le Hui ◽  
Xiang Li ◽  
Chen Gong ◽  
Meng Fang ◽  
Joey Tianyi Zhou ◽  
...  

Convolutional Neural Networks (CNNs) have shown great power in various classification tasks and have achieved remarkable results in practical applications. However, the distinct learning difficulties in discriminating different pairs of classes are largely ignored by the existing networks. For instance, in CIFAR-10 dataset, distinguishing cats from dogs is usually harder than distinguishing horses from ships. By carefully studying the behavior of CNN models in the training process, we observe that the confusion level of two classes is strongly correlated with their angular separability in the feature space. That is, the larger the inter-class angle is, the lower the confusion will be. Based on this observation, we propose a novel loss function dubbed “Inter-Class Angular Loss” (ICAL), which explicitly models the class correlation and can be directly applied to many existing deep networks. By minimizing the proposed ICAL, the networks can effectively discriminate the examples in similar classes by enlarging the angle between their corresponding class vectors. Thorough experimental results on a series of vision and nonvision datasets confirm that ICAL critically improves the discriminative ability of various representative deep neural networks and generates superior performance to the original networks with conventional softmax loss.


2017 ◽  
Vol 106 (9-10) ◽  
pp. 1547-1567 ◽  
Author(s):  
Douglas O. Cardoso ◽  
João Gama ◽  
Felipe M. G. França

2021 ◽  
Vol 12 (7) ◽  
pp. 636-644
Author(s):  
Yu Liu ◽  
Jing Hou ◽  
Yuanxi Peng ◽  
Tian Jiang

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
R. Dinesh Kumar ◽  
E. Golden Julie ◽  
Y. Harold Robinson ◽  
S. Vimal ◽  
Gaurav Dhiman ◽  
...  

Humans have mastered the skill of creativity for many decades. The process of replicating this mechanism is introduced recently by using neural networks which replicate the functioning of human brain, where each unit in the neural network represents a neuron, which transmits the messages from one neuron to other, to perform subconscious tasks. Usually, there are methods to render an input image in the style of famous art works. This issue of generating art is normally called nonphotorealistic rendering. Previous approaches rely on directly manipulating the pixel representation of the image. While using deep neural networks which are constructed using image recognition, this paper carries out implementations in feature space representing the higher levels of the content image. Previously, deep neural networks are used for object recognition and style recognition to categorize the artworks consistent with the creation time. This paper uses Visual Geometry Group (VGG16) neural network to replicate this dormant task performed by humans. Here, the images are input where one is the content image which contains the features you want to retain in the output image and the style reference image which contains patterns or images of famous paintings and the input image which needs to be style and blend them together to produce a new image where the input image is transformed to look like the content image but “sketched” to look like the style image.


2014 ◽  
Author(s):  
Zhen Huang ◽  
Jinyu Li ◽  
Sabato Marco Siniscalchi ◽  
I-Fan Chen ◽  
Chao Weng ◽  
...  

Author(s):  
Alex Hernández-García ◽  
Johannes Mehrer ◽  
Nikolaus Kriegeskorte ◽  
Peter König ◽  
Tim C. Kietzmann

2018 ◽  
Author(s):  
Chi Zhang ◽  
Xiaohan Duan ◽  
Ruyuan Zhang ◽  
Li Tong

Sign in / Sign up

Export Citation Format

Share Document