Occluded Face Recognition Using Sparse Complex Matrix Factorization with Ridge Regularization

Author(s):  
Diyah Utami Kusumaning Putri ◽  
Aina Musdholifah ◽  
Faizal Makhrus ◽  
Viet Hang Duong ◽  
Phuong Thi Le ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Zhe-Zhou Yu ◽  
Yu-Hao Liu ◽  
Bin Li ◽  
Shu-Chao Pang ◽  
Cheng-Cheng Jia

In a real world application, we seldom get all images at one time. Considering this case, if a company hired an employee, all his images information needs to be recorded into the system; if we rerun the face recognition algorithm, it will be time consuming. To address this problem, In this paper, firstly, we proposed a novel subspace incremental method called incremental graph regularized nonnegative matrix factorization (IGNMF) algorithm which imposes manifold into incremental nonnegative matrix factorization algorithm (INMF); thus, our new algorithm is able to preserve the geometric structure in the data under incremental study framework; secondly, considering we always get many face images belonging to one person or many different people as a batch, we improved our IGNMF algorithms to Batch-IGNMF algorithms (B-IGNMF), which implements incremental study in batches. Experiments show that (1) the recognition rate of our IGNMF and B-IGNMF algorithms is close to GNMF algorithm while it runs faster than GNMF. (2) The running times of our IGNMF and B-IGNMF algorithms are close to INMF while the recognition rate outperforms INMF. (3) Comparing with other popular NMF-based face recognition incremental algorithms, our IGNMF and B-IGNMF also outperform then both the recognition rate and the running time.


Author(s):  
Wen-Sheng Chen ◽  
Jingmin Liu ◽  
Binbin Pan ◽  
Yugao Li

Nonnegative matrix factorization (NMF) is a linear approach for extracting localized feature of facial image. However, NMF may fail to process the data points that are nonlinearly separable. The kernel extension of NMF, named kernel NMF (KNMF), can model the nonlinear relationship among data points and extract nonlinear features of facial images. KNMF is an unsupervised method, thus it does not utilize the supervision information. Moreover, the extracted features by KNMF are not sparse enough. To overcome these limitations, this paper proposes a supervised KNMF called block kernel NMF (BKNMF). A novel objective function is established by incorporating the intra-class information. The algorithm is derived by making use of the block strategy and kernel theory. Our BKNMF has some merits for face recognition, such as highly sparse features and orthogonal features from different classes. We theoretically analyze the convergence of the proposed BKNMF. Compared with some state-of-the-art methods, our BKNMF achieves superior performance in face recognition.


Sign in / Sign up

Export Citation Format

Share Document