spatial pyramid
Recently Published Documents


TOTAL DOCUMENTS

334
(FIVE YEARS 138)

H-INDEX

23
(FIVE YEARS 6)

2022 ◽  
pp. 1-1
Author(s):  
Yu Qiu ◽  
Yun Liu ◽  
Yanan Chen ◽  
Jianwen Zhang ◽  
Jinchao Zhu ◽  
...  

2022 ◽  
Vol 70 (3) ◽  
pp. 5039-5058
Author(s):  
Khuram Nawaz Khayam ◽  
Zahid Mehmood ◽  
Hassan Nazeer Chaudhry ◽  
Muhammad Usman Ashraf ◽  
Usman Tariq ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2440
Author(s):  
Faris A. Kateb ◽  
Muhammad Mostafa Monowar ◽  
Md. Abdul Hamid ◽  
Abu Quwsar Ohi ◽  
Muhammad Firoz Mridha

Computer vision is currently experiencing success in various domains due to the harnessing of deep learning strategies. In the case of precision agriculture, computer vision is being investigated for detecting fruits from orchards. However, such strategies limit too-high complexity computation that is impossible to embed in an automated device. Nevertheless, most investigation of fruit detection is limited to a single fruit, resulting in the necessity of a one-to-many object detection system. This paper introduces a generic detection mechanism named FruitDet, designed to be prominent for detecting fruits. The FruitDet architecture is designed on the YOLO pipeline and achieves better performance in detecting fruits than any other detection model. The backbone of the detection model is implemented using DenseNet architecture. Further, the FruitDet is packed with newer concepts: attentive pooling, bottleneck spatial pyramid pooling, and blackout mechanism. The detection mechanism is benchmarked using five datasets, which combines a total of eight different fruit classes. The FruitDet architecture acquires better performance than any other recognized detection methods in fruit detection.


2021 ◽  
Vol 1 (1) ◽  
pp. 29-31
Author(s):  
Mahmood Haithami ◽  
Amr Ahmed ◽  
Iman Yi Liao ◽  
Hamid Jalab

In this paper, we aim to enhance the segmentation capabilities of DeeplabV3 by employing Gated Recurrent Neural Network (GRU). A 1-by-1 convolution in DeeplabV3 was replaced by GRU after the Atrous Spatial Pyramid Pooling (ASSP) layer to combine the input feature maps. The convolution and GRU have sharable parameters, though, the latter has gates that enable/disable the contribution of each input feature map. The experiments on unseen test sets demonstrate that employing GRU instead of convolution would produce better segmentation results. The used datasets are public datasets provided by MedAI competition.


2021 ◽  
Vol 922 (1) ◽  
pp. 012001
Author(s):  
O M Lawal ◽  
Z Huamin ◽  
Z Fan

Abstract Fruit detection algorithm as an integral part of harvesting robot is expected to be robust, accurate, and fast against environmental factors such as occlusion by stem and leaves, uneven illumination, overlapping fruit and many more. For this reason, this paper explored and compared ablation studies on proposed YOLOFruit, YOLOv4, and YOLOv5 detection algorithms. The final selected YOLOFruit algorithm used ResNet43 backbone with Combined activation function for feature extraction, Spatial Pyramid Pooling Network (SPPNet) for detection accuracies, Feature Pyramid Network (FPN) for feature pyramids, Distance Intersection Over Union-Non Maximum Suppression (DIoU-NMS) for detection efficiency and accuracy, and Complete Intersection Over Union (CIoU) loss for faster and better performance. The obtained results showed that the average detection accuracy of YOLOFruit at 86.2% is 1% greater than YOLOv4 at 85.2% and 4.3% higher than YOLOv5 at 81.9%, while the detection time of YOLOFruit at 11.9ms is faster than YOLOv4 at 16.6ms, but not with YOLOv5 at 2.7ms. Hence, the YOLOFruit detection algorithm is highly prospective for better generalization and real-time fruit detection.


Sign in / Sign up

Export Citation Format

Share Document