Power Transmission Lines Inspection using Properly Equipped Unmanned Aerial Vehicle (UAV)

Author(s):  
Alexandros Zormpas ◽  
Konstantia Moirogiorgou ◽  
Kostas Kalaitzakis ◽  
George A. Plokamakis ◽  
Panayotis Partsinevelos ◽  
...  
Author(s):  
Wander M. Martins ◽  
Antonio J. Dantas Filho ◽  
Leandro D. De Jesus ◽  
Adler D. De Souza ◽  
Alexandre C. B. Ramos ◽  
...  

<p>Power transmission lines are of great importance for the operation of all sectors of society, such as commerce, industry and public agencies. To ensure reliability and availability of power supply, regular and occasional inspections are conducted, mostly using patrol with binoculars, helicopters or truck cranes. Research is being developed using unmanned aerial vehicle (UAV) to make this activity autonomous, faster, safer, and less costly. The present work aims to analyze research related to the autonomous control of the UAV along the transmission lines through a systematic review of the literature (SRL), apply a viable solution and to verify the possible lacuna in this state of the art. Improvements in safety, computational process and energy efficiency with low-cost were identified. The results presented can help the research community to perform the working this state of art, from the suggestions of autonomous tracking of transmission lines.</p>


2016 ◽  
Vol 2016 (4) ◽  
pp. 8-10 ◽  
Author(s):  
B.I. Kuznetsov ◽  
◽  
A.N. Turenko ◽  
T.B. Nikitina ◽  
A.V. Voloshko ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1561
Author(s):  
Hao Chen ◽  
Zhongnan Qian ◽  
Chengyin Liu ◽  
Jiande Wu ◽  
Wuhua Li ◽  
...  

Current measurement is a key part of the monitoring system for power transmission lines. Compared with the conventional current sensor, the distributed, self-powered and contactless current sensor has great advantages of safety and reliability. By integrating the current sensing function and the energy harvesting function of current transformer (CT), a time-multiplexed self-powered wireless sensor that can measure the power transmission line current is presented in this paper. Two operating modes of CT, including current sensing mode and energy harvesting mode, are analyzed in detail. Through the design of mode-switching circuit, harvesting circuit and measurement circuit are isolated using only one CT secondary coil, which eliminates the interference between energy harvesting and current measurement. Thus, the accurate measurement in the current sensing mode and the maximum energy collection in the energy harvesting mode are both realized, all of which simplify the online power transmission line monitoring. The designed time-multiplexed working mode allows the sensor to work at a lower transmission line current, at the expense of a lower working frequency. Finally, the proposed sensor is verified by experiments.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Vedanta Pradhan ◽  
O. D. Naidu ◽  
Sinisa Zubic ◽  
Patrick Cost

Author(s):  
Ronaldo F. R. Pereira ◽  
Felipe P. Albuquerque ◽  
Luisa H. B. Liboni ◽  
Eduardo C. M. Costa ◽  
Mauricio C. de Oliveira

Sign in / Sign up

Export Citation Format

Share Document