viable solution
Recently Published Documents


TOTAL DOCUMENTS

789
(FIVE YEARS 405)

H-INDEX

22
(FIVE YEARS 7)

2022 ◽  
Vol 25 (1) ◽  
pp. 1-26
Author(s):  
Fabio Pagani ◽  
Davide Balzarotti

Despite a considerable number of approaches that have been proposed to protect computer systems, cyber-criminal activities are on the rise and forensic analysis of compromised machines and seized devices is becoming essential in computer security. This article focuses on memory forensics, a branch of digital forensics that extract artifacts from the volatile memory. In particular, this article looks at a key ingredient required by memory forensics frameworks: a precise model of the OS kernel under analysis, also known as profile . By using the information stored in the profile, memory forensics tools are able to bridge the semantic gap and interpret raw bytes to extract evidences from a memory dump. A big problem with profile-based solutions is that custom profiles must be created for each and every system under analysis. This is especially problematic for Linux systems, because profiles are not generic : they are strictly tied to a specific kernel version and to the configuration used to build the kernel. Failing to create a valid profile means that an analyst cannot unleash the true power of memory forensics and is limited to primitive carving strategies. For this reason, in this article we present a novel approach that combines source code and binary analysis techniques to automatically generate a profile from a memory dump, without relying on any non-public information. Our experiments show that this is a viable solution and that profiles reconstructed by our framework can be used to run many plugins, which are essential for a successful forensics investigation.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 547
Author(s):  
Kosmas A. Kavadias ◽  
Vasileios Kosmas ◽  
Stefanos Tzelepis

Hydrogen (H2) can be a promising energy carrier for decarbonizing the economy and especially the transport sector, which is considered as one of the sectors with high carbon emissions due to the extensive use of fossil fuels. H2 is a nontoxic energy carrier that could replace fossil fuels. Fuel Cell Electric Vehicles (FCEVs) can decrease air pollution and reduce greenhouse gases when H2 is produced from Renewable Energy Sources (RES) and at the same time being accessible through a widespread network of Hydrogen Refueling Stations (HRSs). In this study, both the sizing of the equipment and financial analysis were performed for an HRS supplied with H2 from the excess electrical energy of a 10 MW wind park. The aim was to determine the optimum configuration of an HRS under the investigation of six different scenarios with various numbers of FCEVs and monthly demands, as well as ascertaining the economic viability of each examined scenario. The effect of the number of vehicles that the installation can refuel to balance the initial cost of the investment and the fuel cost in remote regions was investigated. The results showed that a wind-powered HRS could be a viable solution when sized appropriately and H2 can be used as a storage mean for the rejected wind energy. It was concluded that scenarios with low FCEVs penetration have low economic performance since the payback period presented significantly high values.


Medicina ◽  
2022 ◽  
Vol 58 (1) ◽  
pp. 113
Author(s):  
Orlando Martins ◽  
Philipp Sahrmann ◽  
João Ramos ◽  
Francisco Caramelo ◽  
Sérgio Matos ◽  
...  

Background and Objectives: Peri-implantitis treatment is still undefined. Regenerative treatment is expensive and technically demanding due to the need to handle biomaterials, membranes and different methodologies of decontamination. Resective treatment and implantoplasty might be a viable solution. This case series presents a 24 month retrospective observational study of 10 peri-implantitis patients treated with implantoplasty. Materials and Methods: In the present case series, 10 peri-implantitis patients (20 implants) were treated with a resective approach and implantoplasty. Previous to implantoplasty, all patients underwent non-surgical treatment. This surgery consisted in a full-thickness flap and implant surface exposure. The exposed non-osseointegrated implant body was submitted to implantoplasty. The flap was apically repositioned and sutured. Patients were accompanied for 24 months. Results: The mean initial probing depth (PD) (PD = 5.37 ± 0.86 mm), bleeding on probing (BoP = 0.12 ± 0.06%) and suppuration (Sup = 0.01 ± 0.01%) decreased significantly at the 12 month evaluation (PD = 2.90 ± 0.39 mm; BoP = 0.01 ± 0.01% and Sup = 0.00 ± 0.00%). Between the 12 and 24 month evaluations, there were no significant clinical changes (PD = 2.85 ± 0.45 mm; BoP = 0.01 ± 0.01% and Sup = 0.00 ± 0.00%). Mucosal recession (MR) had a significant increase between the baseline and the first 12 months (0.69 ± 0.99 mm vs. 1.96 ± 1.33 mm), but there were no significant changes between the 12th and 24th month (1.94 ± 1.48 mm). The success rate was 100% without implant fracture or loss. Conclusions: Resective surgery and implantoplasty might be a valid option in some specific peri-implantitis cases. Properly designed clinical trials are needed to confirm this possibility.


2022 ◽  
pp. 1-25
Author(s):  
Paolo Cavaliere ◽  
Graziella Romeo

Abstract Under what conditions can artificial intelligence contribute to political processes without undermining their legitimacy? Thanks to the ever-growing availability of data and the increasing power of decision-making algorithms, the future of political institutions is unlikely to be anything similar to what we have known throughout the last century, possibly with parliaments deprived of their traditional authority and public decision-making processes largely unaccountable. This paper discusses and challenges these concerns by suggesting a theoretical framework under which algorithmic decision-making is compatible with democracy and, most relevantly, can offer a viable solution to counter the rise of populist rhetoric in the governance arena. Such a framework is based on three pillars: (1) understanding the civic issues that are subjected to automated decision-making; (2) controlling the issues that are assigned to AI; and (3) evaluating and challenging the outputs of algorithmic decision-making.


2022 ◽  
Author(s):  
Mikhail Klimov ◽  
Rinat Ramazanov ◽  
Nadir Husein ◽  
Vishwajit Upadhye ◽  
Albina Drobot ◽  
...  

Abstract The proportion of hard-to-recover reserves is currently increasing and reached more than 65% of total conventional hydrocarbon reserves. This results in an increasing number of horizontal wells put into operation. When evaluating the resource recovery efficiency in horizontal wells, and, consequently, the effectiveness of the development of gas condensate field, the key task is to evaluate the well productivity. To accomplish this task, it is necessary to obtain the reservoir fluid production profile for each interval. Conventional well logging methods with proven efficiency in vertical wells, in case of horizontal wells, will require costly asset-heavy applications such as coiled tubing, downhole tractors conveying well logging tools, and Y-tool bypass systems if pump is used. In addition, the logging data interpretation in the case of horizontal wells is less reliable due to the multiphase flow and variations of the fluid flow rate. The fluorescent-based nanomaterial production profiling surveillance technology can be used as a viable solution to this problem, which enables cheaper and more effective means of the development of hard-to-recover reserves. This technology assumes that tracers are placed downhole in various forms, such as marker tapes for lower completions, markers in the polymer coating of the proppant used for multi-stage hydraulic fracturing, and markers placed as fluid in fracturing fluid during hydraulic fracturing or acid stimulation during bottom-hole treatment. The fundamental difference between nanomaterial tracers production profiling and traditional logging methods is that the former offers the possibility to monitor the production at frac ports in the well for a long period of time with far less equipment and manpower, reduced costs, and improved HSE.


2022 ◽  
Vol 14 (2) ◽  
pp. 737
Author(s):  
Kamyar Shirvanimoghaddam ◽  
Bożena Czech ◽  
Ram Yadav ◽  
Cemile Gokce ◽  
Laura Fusco ◽  
...  

Coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a rapidly spreading pandemic and is severely threatening public health globally. The human-to-human transmission route of SARS-CoV-2 is now well established. The reported clinical observations and symptoms of this infection in humans appear in the range between being asymptomatic and severe pneumonia. The virus can be transmitted through aerosols and droplets that are released into the air by a carrier, especially when the person coughs, sneezes, or talks forcefully in a closed environment. As the disease progresses, the use and handling of contaminated personal protective equipment and facemasks have become major issues with significant environmental risks. Therefore, providing an effective method for treating used/contaminated facemasks is crucial. In this paper, we review the environmental challenges and risks associated with the surge in facemask production. We also discuss facemasks and their materials as sources of microplastics and how disposal procedures can potentially lead to the contamination of water resources. We herein review the potential of developing nanomaterial-based antiviral and self-cleaning facemasks. This review discusses these challenges and concludes that the use of sustainable and alternative facemask materials is a promising and viable solution. In this context, it has become essential to address the emerging challenges by developing a new class of facemasks that are effective against the virus, while being biodegradable and sustainable. This paper represents the potentials of natural and/or biodegradable polymers for manufacturing facemasks, such as wood-based polymers, chitosan, and other biodegradable synthetic polymers for achieving sustainability goals during and after pandemics.


Drones ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 17
Author(s):  
Carlo Giorgio Grlj ◽  
Nino Krznar ◽  
Marko Pranjić

Unmanned Aerial Vehicles have advanced rapidly in the last two decades with the advances in microelectromechanical systems (MEMS) technology. It is crucial, however, to design better power supply technologies. In the last decade, lithium polymer and lithium-ion batteries have mainly been used to power multirotor UAVs. Even though batteries have been improved and are constantly being improved, they provide fairly low energy density, which limits multirotors’ UAV flight endurance. This problem is addressed and is being partially solved by using docking stations which provide an aircraft to land safely, charge (or change) the batteries and to take-off as well as being safely stored. This paper focuses on the work carried out in the last decade. Different docking stations are presented with a focus on their movement abilities. Rapid advances in computer vision systems gave birth to precise landing systems. These algorithms are the main reason that docking stations became a viable solution. The authors concluded that the docking station solution to short ranges is a viable option, and numerous extensive studies have been carried out that offer different solutions, but only some types, mainly fixed stations with storage systems, have been implemented and are being used today. This can be seen from the commercially available list of docking stations at the end of this paper. Nevertheless, it is important to be aware of the technologies being developed and implemented, which can offer solutions to a vast number of different problems.


Fishes ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 15
Author(s):  
Ricardo Urías-Sotomayor ◽  
Guillermo Rodríguez-Domínguez ◽  
José Adán Félix-Ortiz ◽  
Gilberto G. Ortega-Lizárraga ◽  
Horacio A. Muñoz-Rubí ◽  
...  

A stock reduction analysis (SRA) of bigeye croaker Micropogonias megalops was performed based on commercial catch data. SRA solutions were restricted to a 2011 bigeye croaker stock biomass estimate of 14,412 t. The viable solution indicated a reduction in stock of 73.6% from 1983 to 2020 with an initial biomass of 22,186 t. In addition, a possible effect of hyperstability of the stock was evaluated by applying different versions of the Cobb–Douglas catch function. The most probable function based on a multi-model selection procedure was the one wherein the catch does not depend on biomass and is directly proportional to the applied fishing effort of small boats (~7 m) and vessels (~24 m). This situation suggests that in a free access regime, fishing can deplete the resource until it collapses, without observing a significant reduction in its catches until the event is very close.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Maria Badiceanu ◽  
Sinziana Anghel ◽  
Natalia Mihailescu ◽  
Anita Ioana Visan ◽  
Cristian N. Mihailescu ◽  
...  

The development of new biological devices in response to market demands requires continuous efforts for the improvement of products’ functionalization based upon expansion of the materials used and their fabrication techniques. One viable solution consists of a functionalization substrate covered by layers via an appropriate deposition technique. Laser techniques ensure an enhanced coating’s adherence to the substrate and improved biological characteristics, not compromising the mechanical properties of the functionalized medical device. This is a review of the main laser techniques involved. We mainly refer to pulse laser deposition, matrix-assisted, and laser simple and double writing versus some other well-known deposition methods as magnetron sputtering, 3D bioprinting, inkjet printing, extrusion, solenoid, fuse-deposition modeling, plasma spray (PS), and dip coating. All these techniques can be extended to functionalize surface fabrication to change local morphology, chemistry, and crystal structure, which affect the biomaterial behavior following the chosen application. Surface functionalization laser techniques are strictly controlled within a confined area to deliver a large amount of energy concisely. The laser deposit performances are presented compared to reported data obtained by other techniques.


Sign in / Sign up

Export Citation Format

Share Document