Study on energy management strategy based on DP for range extended electric bus in Chinese driving cycles

Author(s):  
Jingfu Chen ◽  
Junfeng Wu ◽  
Xiaogang Wu ◽  
Jiuyu Du
2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879776 ◽  
Author(s):  
Jianjun Hu ◽  
Zhihua Hu ◽  
Xiyuan Niu ◽  
Qin Bai

To improve the fuel efficiency and battery life-span of plug-in hybrid electric vehicle, the energy management strategy considering battery life decay is proposed. This strategy is optimized by genetic algorithm, aiming to reduce the fuel consumption and battery life decay of plug-in hybrid electric vehicle. Besides, to acquire better drive-cycle adaptability, driving patterns are recognized with probabilistic neural network. The standard driving cycles are divided into urban congestion cycle, highway cycle, and urban suburban cycle; the optimized energy management strategies in three representative driving cycles are established; meanwhile, a comprehensive test driving cycle is constructed to verify the proposed strategies. The results show that adopting the optimized control strategies, fuel consumption, and battery’s life decay drop by 1.9% and 3.2%, respectively. While using the drive-cycle recognition, the features of different driving cycles can be identified, and based on it, the vehicle can choose appropriate control strategy in different driving conditions. In the comprehensive test driving cycle, after recognizing driving cycles, fuel consumption and battery’s life decay drop by 8.6% and 0.3%, respectively.


2020 ◽  
Vol 10 (2) ◽  
pp. 696
Author(s):  
Qi Zhang ◽  
Xiaoling Fu

Aiming at the problems inherent in the traditional fuzzy energy management strategy (F-EMS), such as poor adaptive ability and lack of self-learning, a neural network fuzzy energy management strategy (NNF-EMS) for hybrid electric vehicles (HEVs) based on driving cycle recognition (DCR) is designed. The DCR was realized by the method of neural network sample learning and characteristic parameter analysis, and the recognition results were considered as the reference input of the fuzzy controller with further optimization of the membership function, resulting in improvement in the poor pertinence of F-EMS driving cycles. The research results show that the proposed NNF-EMS can realize the adaptive optimization of fuzzy membership function and fuzzy rules under different driving cycles. Therefore, the proposed NNF-EMS has strong robustness and practicability under different driving cycles.


Energy ◽  
2016 ◽  
Vol 115 ◽  
pp. 1259-1271 ◽  
Author(s):  
Yongchang Du ◽  
Yue Zhao ◽  
Qinpu Wang ◽  
Yuanbo Zhang ◽  
Huaicheng Xia

Sign in / Sign up

Export Citation Format

Share Document