Design and Production of Tracking System based on OpenMV Image Recognition

Author(s):  
Zeng Wei-Peng ◽  
Cai Li-Sha ◽  
Lin Er-Min ◽  
Zhang Feng-Chun
Author(s):  
Paul A. Wetzel ◽  
Gretchen Krueger-Anderson ◽  
Christine Poprik ◽  
Peter Bascom

1993 ◽  
Vol 9 (2) ◽  
pp. 96-100 ◽  
Author(s):  
Thomas Payne ◽  
Susan Kanvik ◽  
Richard Seward ◽  
Doug Beeman ◽  
Angela Salazar ◽  
...  

2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Fatima Ameen ◽  
Ziad Mohammed ◽  
Abdulrahman Siddiq

Tracking systems of moving objects provide a useful means to better control, manage and secure them. Tracking systems are used in different scales of applications such as indoors, outdoors and even used to track vehicles, ships and air planes moving over the globe. This paper presents the design and implementation of a system for tracking objects moving over a wide geographical area. The system depends on the Global Positioning System (GPS) and Global System for Mobile Communications (GSM) technologies without requiring the Internet service. The implemented system uses the freely available GPS service to determine the position of the moving objects. The tests of the implemented system in different regions and conditions show that the maximum uncertainty in the obtained positions is a circle with radius of about 16 m, which is an acceptable result for tracking the movement of objects in wide and open environments.


Sign in / Sign up

Export Citation Format

Share Document