Optimal convergence factor for Gauss-Newton algorithms and its application to an adaptive parallel realization

Author(s):  
P.S.R. Diniz ◽  
J.E. Cousseau
2017 ◽  
Vol 7 (1) ◽  
pp. 82-100 ◽  
Author(s):  
Hui-Di Wang ◽  
Zheng-Da Huang

AbstractIn this paper, we propose a new SSOR-like method with four parameters to solve the augmented system. And we analyze the convergence of the method and get the optimal convergence factor under suitable conditions. It is proved that the optimal convergence factor is the same as the GMPSD method [M.A. Louka and N.M. Missirlis, A comparison of the extrapolated successive overrelaxation and the preconditioned simultaneous displacement methods for augmented systems, Numer. Math. 131(2015) 517-540] with five parameters under the same assumption.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Adisorn Kittisopaporn ◽  
Pattrawut Chansangiam ◽  
Wicharn Lewkeeratiyutkul

AbstractWe derive an iterative procedure for solving a generalized Sylvester matrix equation $AXB+CXD = E$ A X B + C X D = E , where $A,B,C,D,E$ A , B , C , D , E are conforming rectangular matrices. Our algorithm is based on gradients and hierarchical identification principle. We convert the matrix iteration process to a first-order linear difference vector equation with matrix coefficient. The Banach contraction principle reveals that the sequence of approximated solutions converges to the exact solution for any initial matrix if and only if the convergence factor belongs to an open interval. The contraction principle also gives the convergence rate and the error analysis, governed by the spectral radius of the associated iteration matrix. We obtain the fastest convergence factor so that the spectral radius of the iteration matrix is minimized. In particular, we obtain iterative algorithms for the matrix equation $AXB=C$ A X B = C , the Sylvester equation, and the Kalman–Yakubovich equation. We give numerical experiments of the proposed algorithm to illustrate its applicability, effectiveness, and efficiency.


Sign in / Sign up

Export Citation Format

Share Document