banach contraction principle
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 11)

H-INDEX

13
(FIVE YEARS 0)

Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 136
Author(s):  
Salvador Romaguera

We solve a question posed by E. Karapinar, F. Khojasteh and Z.D. Mitrović in their paper “A Proposal for Revisiting Banach and Caristi Type Theorems in b-Metric Spaces”. We also characterize the completeness of b-metric spaces with the help of a variant of the contractivity condition introduced by the authors in the aforementioned article.



Author(s):  
Janusz Brzdęk

AbstractWe prove and discuss several fixed point results for nonlinear operators, acting on some classes of functions with values in a b-metric space. Thus we generalize and extend a recent theorem of Dung and Hang (J Math Anal Appl 462:131–147, 2018), motivated by several outcomes in Ulam type stability. As a simple consequence we obtain, in particular, that approximate (in some sense) eigenvalues of some linear operators, acting in some function spaces, must be eigenvalues while approximate eigenvectors are close to eigenvectors with the same eigenvalue. Our results also provide some natural generalizations and extensions of the classical Banach Contraction Principle.



Author(s):  
Jarosław Górnicki

AbstractRan and Reurings (Proc Am Math Soc 132(5):1435–1443, 2003) extended the Banach contraction principle to the setting of partially ordered metric spaces and recently Proinov (J Fixed Point Theory Appl 22:21, 2020) extended and unified many earlier fixed point theorems. In this paper we will present analogous results for the significantly wider class of mappings on preordered metric spaces. We give non-trivial examples of Kannan-type mappings.



2021 ◽  
Vol 40 (5) ◽  
pp. 9977-9985
Author(s):  
Naeem Saleem ◽  
Hüseyin Işık ◽  
Salman Furqan ◽  
Choonkil Park

In this paper, we introduce the concept of fuzzy double controlled metric space that can be regarded as the generalization of fuzzy b-metric space, extended fuzzy b-metric space and controlled fuzzy metric space. We use two non-comparable functions α and β in the triangular inequality as: M q ( x , z , t α ( x , y ) + s β ( y , z ) ) ≥ M q ( x , y , t ) ∗ M q ( y , z , s ) . We prove Banach contraction principle in fuzzy double controlled metric space and generalize the Banach contraction principle in aforementioned spaces. We give some examples to support our main results. An application to existence and uniqueness of solution for an integral equation is also presented in this work.



Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 57
Author(s):  
Hsien-Chung Wu

The fixed point theorems in so-called pre-metric spaces is investigated in this paper. The main issue in the pre-metric space is that the symmetric condition is not assumed to be satisfied, which can result in four different forms of triangle inequalities. In this case, the fixed point theorems in pre-metric space will have many different styles based on the different forms of triangle inequalities.



2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Sh. Rezapour ◽  
S. K. Ntouyas ◽  
M. Q. Iqbal ◽  
A. Hussain ◽  
S. Etemad ◽  
...  

We study the existence of solutions for a newly configured model of a double-order integrodifferential equation including φ -Caputo double-order φ -integral boundary conditions. In this way, we use the Krasnoselskii and Leray-Schauder fixed point results. Also, we invoke the Banach contraction principle to confirm the uniqueness of the existing solutions. Finally, we provide three examples to illustrate our analytical findings.



Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 277
Author(s):  
Jamshaid Ahmad ◽  
Giuseppe Marino ◽  
Saleh Abdullah Al-Mezel

F-contractions have inspired a branch of metric fixed point theory committed to the generalization of the classical Banach contraction principle. The study of these contractions and α-fuzzy mappings in b-metric spaces was attempted timidly and was not successful. In this article, the main objective is to obtain common α-fuzzy fixed point results for F-contractions in b-metric spaces. Some multivalued fixed point results in the literature are derived as consequences of our main results. We also provide a non-trivial example to show the validity of our results. As applications, we investigate the solution for fuzzy initial value problems in the context of a generalized Hukuhara derivative. Our results generalize, improve and complement several developments from the existing literature.



2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Adisorn Kittisopaporn ◽  
Pattrawut Chansangiam ◽  
Wicharn Lewkeeratiyutkul

AbstractWe derive an iterative procedure for solving a generalized Sylvester matrix equation $AXB+CXD = E$ A X B + C X D = E , where $A,B,C,D,E$ A , B , C , D , E are conforming rectangular matrices. Our algorithm is based on gradients and hierarchical identification principle. We convert the matrix iteration process to a first-order linear difference vector equation with matrix coefficient. The Banach contraction principle reveals that the sequence of approximated solutions converges to the exact solution for any initial matrix if and only if the convergence factor belongs to an open interval. The contraction principle also gives the convergence rate and the error analysis, governed by the spectral radius of the associated iteration matrix. We obtain the fastest convergence factor so that the spectral radius of the iteration matrix is minimized. In particular, we obtain iterative algorithms for the matrix equation $AXB=C$ A X B = C , the Sylvester equation, and the Kalman–Yakubovich equation. We give numerical experiments of the proposed algorithm to illustrate its applicability, effectiveness, and efficiency.



Sign in / Sign up

Export Citation Format

Share Document