scholarly journals Convergence analysis of gradient-based iterative algorithms for a class of rectangular Sylvester matrix equations based on Banach contraction principle

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Adisorn Kittisopaporn ◽  
Pattrawut Chansangiam ◽  
Wicharn Lewkeeratiyutkul

AbstractWe derive an iterative procedure for solving a generalized Sylvester matrix equation $AXB+CXD = E$ A X B + C X D = E , where $A,B,C,D,E$ A , B , C , D , E are conforming rectangular matrices. Our algorithm is based on gradients and hierarchical identification principle. We convert the matrix iteration process to a first-order linear difference vector equation with matrix coefficient. The Banach contraction principle reveals that the sequence of approximated solutions converges to the exact solution for any initial matrix if and only if the convergence factor belongs to an open interval. The contraction principle also gives the convergence rate and the error analysis, governed by the spectral radius of the associated iteration matrix. We obtain the fastest convergence factor so that the spectral radius of the iteration matrix is minimized. In particular, we obtain iterative algorithms for the matrix equation $AXB=C$ A X B = C , the Sylvester equation, and the Kalman–Yakubovich equation. We give numerical experiments of the proposed algorithm to illustrate its applicability, effectiveness, and efficiency.

Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1732
Author(s):  
Nunthakarn Boonruangkan ◽  
Pattrawut Chansangiam

We introduce a gradient iterative scheme with an optimal convergent factor for solving a generalized Sylvester matrix equation ∑i=1pAiXBi=F, where Ai,Bi and F are conformable rectangular matrices. The iterative scheme is derived from the gradients of the squared norm-errors of the associated subsystems for the equation. The convergence analysis reveals that the sequence of approximated solutions converge to the exact solution for any initial value if and only if the convergent factor is chosen properly in terms of the spectral radius of the associated iteration matrix. We also discuss the convergent rate and error estimations. Moreover, we determine the fastest convergent factor so that the associated iteration matrix has the smallest spectral radius. Furthermore, we provide numerical examples to illustrate the capability and efficiency of this method. Finally, we apply the proposed scheme to discretized equations for boundary value problems involving convection and diffusion.


2021 ◽  
Vol 40 (5) ◽  
pp. 9977-9985
Author(s):  
Naeem Saleem ◽  
Hüseyin Işık ◽  
Salman Furqan ◽  
Choonkil Park

In this paper, we introduce the concept of fuzzy double controlled metric space that can be regarded as the generalization of fuzzy b-metric space, extended fuzzy b-metric space and controlled fuzzy metric space. We use two non-comparable functions α and β in the triangular inequality as: M q ( x , z , t α ( x , y ) + s β ( y , z ) ) ≥ M q ( x , y , t ) ∗ M q ( y , z , s ) . We prove Banach contraction principle in fuzzy double controlled metric space and generalize the Banach contraction principle in aforementioned spaces. We give some examples to support our main results. An application to existence and uniqueness of solution for an integral equation is also presented in this work.


1975 ◽  
Vol 18 (5) ◽  
pp. 675-678
Author(s):  
Ludvik Janos

AbstractLet X be a metrizable topological space and f:X→X a continuous selfmapping such that for every x ∈ X the sequence of iterates {fn(x)} converges. It is proved that under these conditions the following two statements are equivalent:1. There is a metrization of X relative to which f is contractive in the sense of Edelstein.2. For any nonempty f-invariant compact subset Y of X the intersection of all iterates fn(Y) is a one-point set. The relation between this type of contractivity and the Banach contraction principle is also discussed.


2007 ◽  
Vol 187 (2) ◽  
pp. 622-629 ◽  
Author(s):  
Minghui Wang ◽  
Xuehan Cheng ◽  
Musheng Wei

Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1831
Author(s):  
Nopparut Sasaki ◽  
Pattrawut Chansangiam

We propose a new iterative method for solving a generalized Sylvester matrix equation A1XA2+A3XA4=E with given square matrices A1,A2,A3,A4 and an unknown rectangular matrix X. The method aims to construct a sequence of approximated solutions converging to the exact solution, no matter the initial value is. We decompose the coefficient matrices to be the sum of its diagonal part and others. The recursive formula for the iteration is derived from the gradients of quadratic norm-error functions, together with the hierarchical identification principle. We find equivalent conditions on a convergent factor, relied on eigenvalues of the associated iteration matrix, so that the method is applicable as desired. The convergence rate and error estimation of the method are governed by the spectral norm of the related iteration matrix. Furthermore, we illustrate numerical examples of the proposed method to show its capability and efficacy, compared to recent gradient-based iterative methods.


Sign in / Sign up

Export Citation Format

Share Document