A recursive traffic flow predictor based on dynamic generalized linear model framework

Author(s):  
Chang-Jen Lan
2020 ◽  
Author(s):  
Naixin Ren ◽  
Shinya Ito ◽  
Hadi Hafizi ◽  
John M. Beggs ◽  
Ian H. Stevenson

AbstractDetecting synaptic connections using large-scale extracellular spike recordings presents a statistical challenge. While previous methods often treat the detection of each putative connection as a separate hypothesis test, here we develop a modeling approach that infers synaptic connections while incorporating circuit properties learned from the whole network. We use an extension of the Generalized Linear Model framework to describe the cross-correlograms between pairs of neurons and separate correlograms into two parts: a slowly varying effect due to background fluctuations and a fast, transient effect due to the synapse. We then use the observations from all putative connections in the recording to estimate two network properties: the presynaptic neuron type (excitatory or inhibitory) and the relationship between synaptic latency and distance between neurons. Constraining the presynaptic neuron’s type, synaptic latencies, and time constants improves synapse detection. In data from simulated networks, this model outperforms two previously developed synapse detection methods, especially on the weak connections. We also apply our model to in vitro multielectrode array recordings from mouse somatosensory cortex. Here our model automatically recovers plausible connections from hundreds of neurons, and the properties of the putative connections are largely consistent with previous research.New & NoteworthyDetecting synaptic connections using large-scale extracellular spike recordings is a difficult statistical problem. Here we develop an extension of a Generalized Linear Model that explicitly separates fast synaptic effects and slow background fluctuations in cross-correlograms between pairs of neurons while incorporating circuit properties learned from the whole network. This model outperforms two previously developed synapse detection methods in the simulated networks, and recovers plausible connections from hundreds of neurons in in vitro multielectrode array data.


Author(s):  
Andrea Discacciati ◽  
Matteo Bottai

The instantaneous geometric rate represents the instantaneous probability of an event of interest per unit of time. In this article, we propose a method to model the effect of covariates on the instantaneous geometric rate with two models: the proportional instantaneous geometric rate model and the proportional instantaneous geometric odds model. We show that these models can be fit within the generalized linear model framework by using two nonstandard link functions that we implement in the user-defined link programs log_igr and logit_igr. We illustrate how to fit these models and how to interpret the results with an example from a randomized clinical trial on survival in patients with metastatic renal carcinoma.


2015 ◽  
Vol 26 (3) ◽  
pp. 545-555 ◽  
Author(s):  
Futao Guo ◽  
Guangyu Wang ◽  
John L. Innes ◽  
Xiangqing Ma ◽  
Long Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document