synapse detection
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 11)

H-INDEX

5
(FIVE YEARS 2)

2021 ◽  
Vol 15 ◽  
Author(s):  
Gyeong Tae Kim ◽  
Sangkyu Bahn ◽  
Nari Kim ◽  
Joon Ho Choi ◽  
Jinseop S. Kim ◽  
...  

Critical determinants of synaptic functions include subcellular locations, input sources, and specific molecular characteristics. However, there is not yet a reliable and efficient method that can detect synapses. Electron microscopy is a gold-standard method to detect synapses due to its exceedingly high spatial resolution. However, it requires laborious and time-consuming sample preparation and lengthy imaging time with limited labeling methods. Recent advances in various fluorescence microscopy methods have highlighted fluorescence microscopy as a substitute for electron microscopy in reliable synapse detection in a large volume of neural circuits. In particular, array tomography has been verified as a useful tool for neural circuit reconstruction. To further improve array tomography, we developed a novel imaging method, called “structured illumination microscopy on the putative region of interest on ultrathin sections”, which enables efficient and accurate detection of synapses-of-interest. Briefly, based on low-magnification conventional fluorescence microscopy images, synapse candidacy was determined. Subsequently, the coordinates of the regions with candidate synapses were imaged using super-resolution structured illumination microscopy. Using this system, synapses from the high-order thalamic nucleus, the posterior medial nucleus in the barrel cortex were rapidly and accurately imaged.


2021 ◽  
Author(s):  
Angela Zhang ◽  
S Shailja ◽  
Cezar Borba ◽  
Yishen Miao ◽  
Michael Goebel ◽  
...  

This paper presents a deep-learning based workflow to detect synapses and predict their neurotransmitter type in the primitive chordate Ciona intestinalis (Ciona) EM images. Identifying synapses from electron microscopy (EM) images to build a full map of connections between neurons is a labor-intensive process and requires significant domain expertise. Automation of synapse detection and classification would hasten the generation and analysis of connectomes. Furthermore, inferences concerning neuron type and function from synapse features are in many cases difficult to make. Finding the connection between synapse structure and function is an important step in fully understanding a connectome. Activation maps derived from the convolutional neural network provide insights on important features of synapses based on cell type and function. The main contribution of this work is in the differentiation of synapses by neurotransmitter type through the structural information in their EM images. This enables prediction of neurotransmitter types for neurons in Ciona which were previously unknown. The prediction model with code is available on Github.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Austin R Graves ◽  
Richard H Roth ◽  
Han L Tan ◽  
Qianwen Zhu ◽  
Alexei M Bygrave ◽  
...  

Elucidating how synaptic molecules such as AMPA receptors mediate neuronal communication and tracking their dynamic expression during behavior is crucial to understand cognition and disease, but current technological barriers preclude large-scale exploration of molecular dynamics in vivo. We have developed a suite of innovative methodologies that break through these barriers: a new knockin mouse line with fluorescently tagged endogenous AMPA receptors, two-photon imaging of hundreds of thousands of labeled synapses in behaving mice, and computer-vision-based automatic synapse detection. Using these tools, we can longitudinally track how the strength of populations of synapses changes during behavior. We used this approach to generate an unprecedentedly detailed spatiotemporal map of synapses undergoing changes in strength following sensory experience. More generally, these tools can be used as an optical probe capable of measuring functional synapse strength across entire brain areas during any behavioral paradigm, describing complex system-wide changes with molecular precision.


2020 ◽  
Vol 124 (6) ◽  
pp. 1588-1604
Author(s):  
Naixin Ren ◽  
Shinya Ito ◽  
Hadi Hafizi ◽  
John M. Beggs ◽  
Ian H. Stevenson

Detecting synaptic connections using large-scale extracellular spike recordings is a difficult statistical problem. Here, we develop an extension of a generalized linear model that explicitly separates fast synaptic effects and slow background fluctuations in cross-correlograms between pairs of neurons while incorporating circuit properties learned from the whole network. This model outperforms two previously developed synapse detection methods in the simulated networks and recovers plausible connections from hundreds of neurons in in vitro multielectrode array data.


2020 ◽  
Author(s):  
Naixin Ren ◽  
Shinya Ito ◽  
Hadi Hafizi ◽  
John M. Beggs ◽  
Ian H. Stevenson

AbstractDetecting synaptic connections using large-scale extracellular spike recordings presents a statistical challenge. While previous methods often treat the detection of each putative connection as a separate hypothesis test, here we develop a modeling approach that infers synaptic connections while incorporating circuit properties learned from the whole network. We use an extension of the Generalized Linear Model framework to describe the cross-correlograms between pairs of neurons and separate correlograms into two parts: a slowly varying effect due to background fluctuations and a fast, transient effect due to the synapse. We then use the observations from all putative connections in the recording to estimate two network properties: the presynaptic neuron type (excitatory or inhibitory) and the relationship between synaptic latency and distance between neurons. Constraining the presynaptic neuron’s type, synaptic latencies, and time constants improves synapse detection. In data from simulated networks, this model outperforms two previously developed synapse detection methods, especially on the weak connections. We also apply our model to in vitro multielectrode array recordings from mouse somatosensory cortex. Here our model automatically recovers plausible connections from hundreds of neurons, and the properties of the putative connections are largely consistent with previous research.New & NoteworthyDetecting synaptic connections using large-scale extracellular spike recordings is a difficult statistical problem. Here we develop an extension of a Generalized Linear Model that explicitly separates fast synaptic effects and slow background fluctuations in cross-correlograms between pairs of neurons while incorporating circuit properties learned from the whole network. This model outperforms two previously developed synapse detection methods in the simulated networks, and recovers plausible connections from hundreds of neurons in in vitro multielectrode array data.


2019 ◽  
Author(s):  
Zhiyuan Lu ◽  
C. Shan Xu ◽  
Kenneth J. Hayworth ◽  
Patricia Rivlin ◽  
Stephen M. Plaza ◽  
...  

AbstractDeriving the detailed synaptic connections of the entire nervous system has been a long term but unrealized goal of the nascent field of connectomics. For Drosophila, in particular, three sample preparation problems must be solved before the requisite imaging and analysis can even begin. The first is dissecting the brain, connectives, and ventral nerve cord (roughly comparable to the brain, neck, and spinal cord of vertebrates) as a single contiguous unit. Second is fixing and staining the resulting specimen, too large for previous techniques such as flash freezing, so as to permit the necessary automated segmentation of neuron membranes. Finally the contrast must be sufficient to support synapse detection at imaging speeds that enable the entire connectome to be collected. To address these issues, we report three major novel methods to dissect, fix, dehydrate and stain this tiny but complex nervous system in its entirety; together they enable us to uncover a Focused Ion-Beam Scanning Electron Microscopy (FIB-SEM) connectome of the entire Drosophila brain. They reliably recover fixed neurons as round profiles with darkly stained synapses, suitable for machine segmentation and automatic synapse detection, for which only minimal human intervention is required. Our advanced procedures use: a custom-made jig to microdissect both regions of the central nervous system, dorsal and ventral, with their connectives; fixation and Durcupan embedment, followed by a special hot-knife slicing protocol to reduce the brain to dimensions suited to FIB; contrast enhancement by heavy metals; together with a progressive lowering of temperature protocol for dehydration. Collectively these optimize the brain’s morphological preservation, imaging it at a usual resolution of 8nm per voxel while simultaneously speeding the formerly slow rate of FIB-SEM. With these methods we could recently obtain a FIB-SEM image stack of the Drosophila brain eight times faster than hitherto, at approximately the same rate as, but without the requirement to cut, nor imperfections in, EM serial sections.


2019 ◽  
Vol 36 (5) ◽  
pp. 1599-1606 ◽  
Author(s):  
Yizhi Wang ◽  
Congchao Wang ◽  
Petter Ranefall ◽  
Gerard Joey Broussard ◽  
Yinxue Wang ◽  
...  

Abstract Motivation Synapses are essential to neural signal transmission. Therefore, quantification of synapses and related neurites from images is vital to gain insights into the underlying pathways of brain functionality and diseases. Despite the wide availability of synaptic punctum imaging data, several issues are impeding satisfactory quantification of these structures by current tools. First, the antibodies used for labeling synapses are not perfectly specific to synapses. These antibodies may exist in neurites or other cell compartments. Second, the brightness of different neurites and synaptic puncta is heterogeneous due to the variation of antibody concentration and synapse-intrinsic differences. Third, images often have low signal to noise ratio due to constraints of experiment facilities and availability of sensitive antibodies. These issues make the detection of synapses challenging and necessitates developing a new tool to easily and accurately quantify synapses. Results We present an automatic probability-principled synapse detection algorithm and integrate it into our synapse quantification tool SynQuant. Derived from the theory of order statistics, our method controls the false discovery rate and improves the power of detecting synapses. SynQuant is unsupervised, works for both 2D and 3D data, and can handle multiple staining channels. Through extensive experiments on one synthetic and three real datasets with ground truth annotation or manually labeling, SynQuant was demonstrated to outperform peer specialized unsupervised synapse detection tools as well as generic spot detection methods. Availability and implementation Java source code, Fiji plug-in, and test data are available at https://github.com/yu-lab-vt/SynQuant. Supplementary information Supplementary data are available at Bioinformatics online.


IBRO Reports ◽  
2019 ◽  
Vol 6 ◽  
pp. S282
Author(s):  
Changjoo Park ◽  
Jawon Gim ◽  
Jinseop S. Kim

2019 ◽  
Vol 15 (5) ◽  
pp. e1007012 ◽  
Author(s):  
Victor Kulikov ◽  
Syuan-Ming Guo ◽  
Matthew Stone ◽  
Allen Goodman ◽  
Anne Carpenter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document