An enhancement to speed estimation using single loop detectors

Author(s):  
Wei-Hua Lin ◽  
J. Dahlgren ◽  
Hong Huo
2003 ◽  
Vol 1856 (1) ◽  
pp. 106-117 ◽  
Author(s):  
Jaimyoung Kwon ◽  
Pravin Varaiya ◽  
Alexander Skabardonis

An algorithm for real-time estimation of truck traffic in multilane freeways was proposed. The algorithm used data from single loop detectors—the most widely installed surveillance technology for urban freeways in the United States. The algorithm worked for those freeway locations that have a truck-free lane and exhibit high lane-to-lane speed correlation. These conditions are met by most urban freeway locations. The algorithm produced real-time estimates of the truck traffic volumes at the location. It also can be used to produce alternative estimates of the mean effective vehicle length, which can improve speed estimates from single loop detector data. The algorithm was tested with real freeway data and produced estimates of truck traffic volumes with only 5.7% error. It also captured the daily patterns of truck traffic and mean effective vehicle length. Applied to loop data on Interstate 710 near Long Beach, California, during the dockworkers’ lockout October 1 to 9, 2002, the algorithm found a 32% reduction in five-axle truck volume.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 265
Author(s):  
Sotirios Kontogiannis ◽  
Anestis Kastellos ◽  
George Kokkonis ◽  
Theodosios Gkamas ◽  
Christos Pikridas

Accidents in highway tunnels involving trucks carrying flammable cargoes can be dangerous, needing immediate confrontation to detect and safely evacuate the trapped people to lead them to the safety exits. Unfortunately, existing sensing technologies fail to detect and track trapped persons or moving vehicles inside tunnels in such an environment. This paper presents a distributed Bluetooth system architecture that uses detection equipment following a MIMO approach. The proposed equipment uses two long-range Bluetooth and one BLE transponder to locate vehicles and trapped people in motorway tunnels. Moreover, the detector’s parts and distributed architecture are analytically described, along with interfacing with the authors’ resources management system implementation. Furthermore, the authors also propose a speed detection process, based on classifier training, using RSSI input and speed calculations from the tunnel inductive loops as output, instead of the Friis equation with Kalman filtering steps. The proposed detector was experimentally placed at the Votonosi tunnel of the EGNATIA motorway in Greece, and its detection functionality was validated. Finally, the detector classification process accuracy is evaluated using feedback from the existing tunnel inductive loop detectors. According to the evaluation process, classifiers based on decision trees or random forests achieve the highest accuracy.


Author(s):  
Seri Oh ◽  
Stephen G. Ritchie ◽  
Cheol Oh

Accurate traffic data acquisition is essential for effective traffic surveillance, which is the backbone of advanced transportation management and information systems (ATMIS). Inductive loop detectors (ILDs) are still widely used for traffic data collection in the United States and many other countries. Three fundamental traffic parameters—speed, volume, and occupancy—are obtainable via single or double (speed-trap) ILDs. Real-time knowledge of such traffic parameters typically is required for use in ATMIS from a single loop detector station, which is the most commonly used. However, vehicle speeds cannot be obtained directly. Hence, the ability to estimate vehicle speeds accurately from single loop detectors is of considerable interest. In addition, operating agencies report that conventional loop detectors are unable to achieve volume count accuracies of more than 90% to 95%. The improved derivation of fundamental real-time traffic parameters, such as speed, volume, occupancy, and vehicle class, from single loop detectors and inductive signatures is demonstrated.


Author(s):  
Xiaoping Zhang ◽  
Yinhai Wang ◽  
Nancy L. Nihan ◽  
Hu Dong
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document