SPECIALIST-RM — Integrated variable speed limit control and ramp metering based on shock wave theory

Author(s):  
I. Schelling ◽  
A. Hegyi ◽  
S. P. Hoogendoorn
Algorithms ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 266
Author(s):  
Juan Chen ◽  
Qinxuan Feng ◽  
Qi Guo

In order to solve the problem of traffic congestion and emission optimization of urban multi-class expressways, a robust dynamic nondominated sorting multi-objective genetic algorithm DFCM-RDNSGA-III based on density fuzzy c-means clustering method is proposed in this paper. Considering the three performance indicators of travel time, ramp queue and traffic emissions, the ramp metering and variable speed limit control schemes of an expressway are optimized to improve the main road and ramp traffic congestion, therefore achieving energy conservation and emission reduction. In the VISSIM simulation environment, a multi-on-ramp and multi-off-ramp road network is built to verify the performance of the algorithm. The results show that, compared with the existing algorithm NSGA-III, the DFCM-RDNSGA-III algorithm proposed in this paper can provide better ramp metering and variable speed limit control schemes in the process of road network peak formation and dissipation. In addition, the traffic congestion of expressways can be improved and energy conservation as well as emission reduction can also be realized.


2008 ◽  
Vol 41 (2) ◽  
pp. 14084-14089 ◽  
Author(s):  
Ioannis Papamichail ◽  
Katerina Kampitaki ◽  
Markos Papageorgiou ◽  
Albert Messmer

2021 ◽  
Vol 11 (6) ◽  
pp. 2574
Author(s):  
Filip Vrbanić ◽  
Edouard Ivanjko ◽  
Krešimir Kušić ◽  
Dino Čakija

The trend of increasing traffic demand is causing congestion on existing urban roads, including urban motorways, resulting in a decrease in Level of Service (LoS) and safety, and an increase in fuel consumption. Lack of space and non-compliance with cities’ sustainable urban plans prevent the expansion of new transport infrastructure in some urban areas. To alleviate the aforementioned problems, appropriate solutions come from the domain of Intelligent Transportation Systems by implementing traffic control services. Those services include Variable Speed Limit (VSL) and Ramp Metering (RM) for urban motorways. VSL reduces the speed of incoming vehicles to a bottleneck area, and RM limits the inflow through on-ramps. In addition, with the increasing development of Autonomous Vehicles (AVs) and Connected AVs (CAVs), new opportunities for traffic control are emerging. VSL and RM can reduce traffic congestion on urban motorways, especially so in the case of mixed traffic flows where AVs and CAVs can fully comply with the control system output. Currently, there is no existing overview of control algorithms and applications for VSL and RM in mixed traffic flows. Therefore, we present a comprehensive survey of VSL and RM control algorithms including the most recent reinforcement learning-based approaches. Best practices for mixed traffic flow control are summarized and new viewpoints and future research directions are presented, including an overview of the currently open research questions.


2015 ◽  
Vol 42 (7) ◽  
pp. 477-489 ◽  
Author(s):  
Ying Luo ◽  
M. Hadiuzzaman ◽  
Jie Fang ◽  
Tony Z. Qiu

Over the past few decades, several active traffic control methods have been proposed to improve freeway efficiency at bottleneck locations. Variable speed limit (VSL) is one of these effective controls. Previous studies have evaluated VSL control, but primarily during recurrent congestion only. This study focuses on evaluating the performance of VSL control for both recurrent and non-recurrent congestion. To assess the effectiveness of a previously proposed VSL control in a real-world situation, this study has three evaluation objectives: (1) examine the control performance when recurrent and (or) non-recurrent congestion occurs; (2) assess the effectiveness of the control when a queue encounters the VSL sign; and (3) consider the impact of system detection delay in VSL control. Comparative experiments for Whitemud Drive in Edmonton, Alberta, Canada, are simulated in the VISSIM platform, and traffic performance is compared among scenarios with and without control. The simulation results show that VSL improves mobility for both recurrent and non-recurrent congestion. The VSL control reduces total travel time, and improves total travel distance and total flow. Furthermore, it slows down the shockwave propagation speed, improves the average speed on most of the freeway segments, and reduces the duration of traffic recovery.


Sign in / Sign up

Export Citation Format

Share Document