The effect of signal settings on the macroscopic fundamental diagram and its applicability in traffic signal driven perimeter control strategies

Author(s):  
David de Jong ◽  
Victor L. Knoop ◽  
Serge P. Hoogendoorn
2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Chih-Cheng Hsu ◽  
Yu-Chiun Chiou

Previous cellular automata (CA) models have been developed for simulating driver behaviors in response to traffic signal control. However, driver behaviors during traffic signal change intervals, including cross/stop decision and speed adjustment, have not yet been studied. Based on this, this paper aims to propose a change interval CA model for replicating driver’s perception and response to amber light based on stopping probability and speed adjusting functions. The proposed model has been validated by exemplified and field cases. To investigate the applicability of the proposed model, macroscopic and microscopic analyses are conducted. Although the macroscopic fundamental diagram analysis reveals only a small decrease in maximum traffic flow rates with considering driver behaviors in change intervals, in the microscopic analysis, the proposed model can present reasonable vehicular trajectories and deceleration rates during slowdown process.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Haibo Mu ◽  
Linzhong Liu ◽  
Xiaojing Li

This paper focuses on the use of timed colored Petri nets (TCPN) to study emergency vehicle (EV) preemption control problem. TCPN is adopted to establish an urban traffic network model composed of three submodels, namely, traffic flow model, traffic signal display and phase switch model, and traffic signal switch control model. An EV preemption optimization control system, consisting of monitoring subsystem, phase time determination subsystem, and phase switching control subsystem, is designed. The calculation method of the travelling speed of EV on road sections is presented, and the methods of determining the actual green time of current phase and the other phase are given. Some computational comparisons are performed to verify the signal preemption control strategies, and simulation results indicate that the proposed approach can provide efficient and safe running environments for emergency vehicles and minimize EV’s interference to social vehicles simultaneously.


2019 ◽  
Vol 2 (1) ◽  
pp. 85-95
Author(s):  
Naoki Yoshioka ◽  
Kenji Terada ◽  
Takashi Shimada ◽  
Nobuyasu Ito

Sign in / Sign up

Export Citation Format

Share Document