A bilinear feature extraction method for rapid serial visual presentation triage

Author(s):  
Ke Yu ◽  
Kaiquan Shen ◽  
Shiyun Shao ◽  
Wu Chun Ng ◽  
Xiaoping Li
Author(s):  
Praveen K. Parashiva ◽  
Vinod A Prasad

Abstract When the outcome of an event is not the same as expected, the cognitive state that monitors performance elicits a time-locked brain response termed as Error-Related Potential (ErrP). Objective – In the existing work, ErrP is not recorded when there is a disassociation between an object and its description. The objective of this work is to propose a Serial Visual Presentation (SVP) experimental paradigm to record ErrP when an image and its label are disassociated. Additionally, this work aims to propose a novel method for detecting ErrP on a single-trial basis. Method – The method followed in this work includes designing of SVP paradigm in which labeled images from six categories (bike, car, flower, fruit, cat, and dog) are presented serially. In this work, a text (visual) or an audio clip describing the image in one word is presented as the label. Further, the ErrP is detected on a single-trial basis using novel electrode-averaged features. Results - The ErrP data recorded from 11 subjects’ have consistent characteristics compared to existing ErrP literature. Detection of ErrP on a single-trial basis is carried out using a novel feature extraction method on two type labeling types separately. The best average classification accuracy achieved is 69.09±4.70% and 63.33±4.56% for the audio and visual type of labeling the image, respectively. The proposed feature extraction method achieved higher classification accuracy when compared with two existing feature extraction methods. Significance - The significance of this work is that it can be used as a Brain-Computer Interface (BCI) system for quantitative evaluation and treatment of mild cognitive impairment. This work can also find non-clinical BCI applications such as image annotation.


2020 ◽  
Vol 27 (4) ◽  
pp. 313-320 ◽  
Author(s):  
Xuan Xiao ◽  
Wei-Jie Chen ◽  
Wang-Ren Qiu

Background: The information of quaternary structure attributes of proteins is very important because it is closely related to the biological functions of proteins. With the rapid development of new generation sequencing technology, we are facing a challenge: how to automatically identify the four-level attributes of new polypeptide chains according to their sequence information (i.e., whether they are formed as just as a monomer, or as a hetero-oligomer, or a homo-oligomer). Objective: In this article, our goal is to find a new way to represent protein sequences, thereby improving the prediction rate of protein quaternary structure. Methods: In this article, we developed a prediction system for protein quaternary structural type in which a protein sequence was expressed by combining the Pfam functional-domain and gene ontology. turn protein features into digital sequences, and complete the prediction of quaternary structure through specific machine learning algorithms and verification algorithm. Results: Our data set contains 5495 protein samples. Through the method provided in this paper, we classify proteins into monomer, or as a hetero-oligomer, or a homo-oligomer, and the prediction rate is 74.38%, which is 3.24% higher than that of previous studies. Through this new feature extraction method, we can further classify the four-level structure of proteins, and the results are also correspondingly improved. Conclusion: After the applying the new prediction system, compared with the previous results, we have successfully improved the prediction rate. We have reason to believe that the feature extraction method in this paper has better practicability and can be used as a reference for other protein classification problems.


Sign in / Sign up

Export Citation Format

Share Document