remaining useful life
Recently Published Documents





2022 ◽  
Vol 521 ◽  
pp. 230975
Fujin Wang ◽  
Zhibin Zhao ◽  
Jiaxin Ren ◽  
Zhi Zhai ◽  
Shibin Wang ◽  

2022 ◽  
Yifan Li ◽  
Yongyong Xiang ◽  
Baisong Pan ◽  
Luojie Shi

Abstract Accurate cutting tool remaining useful life (RUL) prediction is of significance to guarantee the cutting quality and minimize the production cost. Recently, physics-based and data-driven methods have been widely used in the tool RUL prediction. The physics-based approaches may not accurately describe the time-varying wear process due to a lack of knowledge for underlying physics and simplifications involved in physical models, while the data-driven methods may be easily affected by the quantity and quality of data. To overcome the drawbacks of these two approaches, a hybrid prognostics framework considering tool wear state is developed to achieve an accurate prediction. Firstly, the mapping relationship between the sensor signal and tool wear is established by support vector regression (SVR). Then, the tool wear statuses are recognized by support vector machine (SVM) and the results are put into a Bayesian framework as prior information. Thirdly, based on the constructed Bayesian framework, parameters of the tool wear model are updated iteratively by the sliding time window and particle filter algorithm. Finally, the tool wear state space and RUL can be predicted accordingly using the updating tool wear model. The validity of the proposed method is demonstrated by a high-speed machine tool experiment. The results show that the presented approach can effectively reduce the uncertainty of tool wear state estimation and improve the accuracy of RUL prediction.

2022 ◽  
pp. 93-113
M. Sathiyanathan ◽  
K. Anandhakumar ◽  
S. Jaganathan ◽  
C. S. Subashkumar

2022 ◽  
Vol 41 (1) ◽  
Adriana Villalón-Falcón ◽  
Alberto Prieto-Moreno ◽  
Marcos Quiñones-Grueiro ◽  
Orestes Llanes-Santiago

Nicola Esposito ◽  
Agostino Mele ◽  
Bruno Castanier ◽  
Massimiliano Giorgio

In this paper, a new gamma-based degradation process with random effect is proposed that allows to account for the presence of measurement error that depends in stochastic sense on the measured degradation level. This new model extends a perturbed gamma model recently suggested in the literature, by allowing for the presence of a unit to unit variability. As the original one, the extended model is not mathematically tractable. The main features of the proposed model are illustrated. Maximum likelihood estimation of its parameters from perturbed degradation measurements is addressed. The likelihood function is formulated. Hence, a new maximization procedure that combines a particle filter and an expectation-maximization algorithm is suggested that allows to overcome the numerical issues posed by its direct maximization. Moreover, a simple algorithm based on the same particle filter method is also described that allows to compute the cumulative distribution function of the remaining useful life and the conditional probability density function of the hidden degradation level, given the past noisy measurements. Finally, two numerical applications are developed where the model parameters are estimated from two sets of perturbed degradation measurements of carbon-film resistors and fuel cell membranes. In the first example the presence of random effect is statistically significant while in the second example it is not significant. In the applications, the presence of random effect is checked via appropriate statistical procedures. In both the examples, the influence of accounting for the presence of random effect on the estimates of the cumulative distribution function of the remaining useful life of the considered units is also discussed. Obtained results demonstrate the affordability of the proposed approach and the usefulness of the proposed model.

Sign in / Sign up

Export Citation Format

Share Document