Comprehensive Understanding of the Role of Emitter Layer Thickness for Metal–Oxide–Semiconductors Based Solar Cells

Author(s):  
Kenan Ozel ◽  
Abdullah Yildiz
2020 ◽  
Vol 234 (4) ◽  
pp. 615-631
Author(s):  
Seyedsina Hejazi ◽  
Marco Altomare ◽  
Patrik Schmuki

AbstractPhoto-electrochemical (PEC) water splitting (WS) using metal oxide semiconductors is regarded as a promising approach for the renewable production of fuels and energy vectors such as hydrogen (H2). Among metal oxide semiconductors, iron oxide in the form of hematite (α-Fe2O3) is one of the most researched photo-anode materials, mainly due to its ability to absorb photons up to 600 nm combined to a set of desirable properties such as high photocorrosion resistance, environmental friendliness, large abundance and relatively low production costs. However, hematite main disadvantages are a low electrical conductivity and a high rate of charge recombination; both these shortcomings drastically limit functionality and efficiency of hematite-based photo-anodes in PEC devices. One-dimensional (1D) nanostructuring is a powerful tool to tackle such disadvantages as it provides the photoelectrode material with increased surface area along with directional charge transport properties and short charge diffusion distances to the electrolyte – these features can improve the lifetime of photo-generated charges and/or enhance the charge transfer efficiency, and can consequently lead to a superior photo-electrochemical performance. At the same time, chemical/physical modification can also compensate natural weaknesses of hematite in water photoelectolysis. The present mini-review outlines a series of most effective strategies for the fabrication of 1D hematite nanostructures as well as for their physicochemical modification, mainly by doping or co-catalyst decoration, to achieve superior PEC activity.


1996 ◽  
Vol 143 (10) ◽  
pp. 3273-3278 ◽  
Author(s):  
S. Ohkubo ◽  
Y. Ashida ◽  
T. Utsumi ◽  
K. Hongo ◽  
G. Nogami

Sign in / Sign up

Export Citation Format

Share Document