Optimal Sizing of Smart Home Renewable Energy Resources and Battery Under Prosumer-Based Energy Management

2020 ◽  
pp. 1-9 ◽  
Author(s):  
Lokeshgupta Bhamidi ◽  
S. Sivasubramani
Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 403
Author(s):  
Deyaa Ahmed ◽  
Mohamed Ebeed ◽  
Abdelfatah Ali ◽  
Ali S. Alghamdi ◽  
Salah Kamel

Optimal inclusion of a photovoltaic system and wind energy resources in electrical grids is a strenuous task due to the continuous variation of their output powers and stochastic nature. Thus, it is mandatory to consider the variations of the Renewable energy resources (RERs) for efficient energy management in the electric system. The aim of the paper is to solve the energy management of a micro-grid (MG) connected to the main power system considering the variations of load demand, photovoltaic (PV), and wind turbine (WT) under deterministic and probabilistic conditions. The energy management problem is solved using an efficient algorithm, namely equilibrium optimizer (EO), for a multi-objective function which includes cost minimization, voltage profile improvement, and voltage stability improvement. The simulation results reveal that the optimal installation of a grid-connected PV unit and WT can considerably reduce the total cost and enhance system performance. In addition to that, EO is superior to both whale optimization algorithm (WOA) and sine cosine algorithm (SCA) in terms of the reported objective function.


2021 ◽  
pp. 0958305X2110301
Author(s):  
Animesh Masih ◽  
HK Verma

In current scenario, people tend to move towards outskirts and like to settle in places that are close to nature. But, due to urban lifestyle and to fulfill the basic needs, demand of electricity remains the same as in urban areas. This demand of electricity can be only fulfilled by using hybrid renewable energy resources, which is easily available in outskirts. Renewable energy resources are unreliable and more expensive. Researchers are working to make, it more reliable and economic in terms of utilization. This article proposes a metaheuristic grasshopper optimization algorithm (GOA) for the optimal sizing of hybrid PV/wind/battery energy system located in remote areas. The proposed algorithm finds the optimal sizing and configuration of remote village load demand that includes house electricity and agriculture. The optimization problem is solved by minimization of total system cost at a desirable level of loss of power supply’s reliability index (LPSRI). The results of GOA are compared with particle swarm optimization (PSO), genetic algorithm (GA) and hybrid optimization of multiple energy resources (HOMER) software. In addition, results are also validated by modeling and simulation of the hybrid energy system and its configurations at different weather conditions-based results. Hybrid PV/wind/battery is found as an optimal system at remote areas and sizing are[Formula: see text] with cost of energy (COE) (0.3473$/kWh) and loss of power supplies reliability index (LPSRI) (0%). It is clear from the results that GOA based methods are more efficient for selection of optimal energy system configuration as compared to others algorithms.


2021 ◽  
Vol 4 (2) ◽  
pp. 125-130
Author(s):  
Muhammad Azhar Mahmood ◽  
Muhammad Kamran Liaqat Bhatti ◽  
S. Raza ◽  
M. Riaz

Most of the industries including the oil sector are looking forward towards the renewable energy resources with proper energy management system (EMS) as it is the need of time. For this purpose, solar and wind energy are the renewable energy resources, which are obtained from natural resources and produce clean and environment -friendly electrical energy and can be used for oil depots. The proper utilization of solar and wind energy from natural resource may result in economical and cost-effective EMS. In the proposed research work, an effective energy management demonstration is delivered to ensure the ceaseless flexibility of power. Furthermore, reduction of production per unit cost to the oil sector industry by utilizing multiple objectives streamlining. In the proposed oil depot, connected loads are divided into Shiftable and Non-Shiftable loads and then apply Branch and Bound Algorithm (BnB) with binary integer linear programming (BILP). By using the BnB technique, selected shiftable loads are shifted to the low cost energy resource automatically and resultantly, we get the low price unit cost and continuous power supply. Simulation results for the above-mentioned research work are performed on MATLAB. The proposed technique helps to reduce the power stack shedding issue as well.


2020 ◽  
Vol 12 (8) ◽  
pp. 3115
Author(s):  
Ronggang Zhang ◽  
Sathishkumar V E ◽  
R. Dinesh Jackson Samuel

This article provides a fuzzy expert system for efficient energy smart home management systems (FES-EESHM), demand management, renewable energy management, energy storage, and microgrids. The suggested fuzzy expert framework is utilized to simplify designing smart microgrids with storage systems, renewable sources, and controllable loads on resources. Further, the fuzzy expert framework enhances energy and storage to utilize renewable energy and maximize the microgrid’s financial gain. Moreover, the fuzzy expert system utilizes insolation, electricity price, wind speed, and load energy controllably and unregulated as input variables to enable energy management. It uses input variables including insolation, electrical quality, wind, and the power of uncontrollable and controllable loads to allow energy management. Furthermore, these input data can be calculated, imported, or predicted directly via grid measurement using any prediction process. In this paper, the input variables are fuzzified, a series of rules are specified by the expert system, and the output is de-fuzzified. The findings of the expert program are discussed to explain how to handle microgrid power consumption and production. However, the decisions on energy generated, controllable loads, and own consumption are based on three outputs. The first production is for processing, selling, or consuming the energy produced. The second output is used for controlling the load. The third result shows how to produce for prosumer’s use. The expert method can be checked via the hourly input of variable values. Finally, to confirm the findings, the method suggested is compared to other available approaches.


Sign in / Sign up

Export Citation Format

Share Document