grasshopper optimization algorithm
Recently Published Documents


TOTAL DOCUMENTS

289
(FIVE YEARS 264)

H-INDEX

16
(FIVE YEARS 9)

2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

This paper intends to consider a multi-objective problem for expansion planning in Power Distribution System (PDS) by focusing on (i) expansion strategy (ii) allocation of Circuit Breaker (CB), (iii) allocation of Distribution Static Compensator (DSTATCOM), (iv) Contingency Load Loss Index (CLLI), and power loss. Accordingly, the encoding parameters decide for expansion, Circuit Breaker (CB) placement, DSTATCOM placement, load of real and reactive powers of expanded bus or node are optimized using Grasshopper Optimization Algorithm (GOA) based on its distance and hence, the proposed algorithm is termed as Distance Oriented Grasshopper Optimization Algorithm (DGOA). The proposed expansion planning model is carried out in IEEE 33 test bus system. Moreover, the adopted scheme is compared with conventional algorithms and the optimal results are obtained.


2022 ◽  
Vol 71 (2) ◽  
pp. 3513-3531
Author(s):  
Saima Hassan ◽  
Mojtaba Ahmadieh Khanesar ◽  
Nazar Kalaf Hussein ◽  
Samir Brahim Belhaouari ◽  
Usman Amjad ◽  
...  

2022 ◽  
Vol 19 (3) ◽  
pp. 2471-2488
Author(s):  
Wenjun Xu ◽  
◽  
Zihao Zhao ◽  
Hongwei Zhang ◽  
Minglei Hu ◽  
...  

<abstract> <p>It is vital for the annotation of uncharacterized proteins by protein function prediction. At present, Deep Neural Network based protein function prediction is mainly carried out for dataset of small scale proteins or Gene Ontology, and usually explore the relationships between single protein feature and function tags. The practical methods for large-scale multi-features protein prediction still need to be studied in depth. This paper proposes a DNN based protein function prediction approach IGP-DNN. This method uses Grasshopper Optimization Algorithm (GOA) and Intuitionistic Fuzzy c-Means clustering (IFCM) based protein function modules extracting algorithm to extract the features of protein modules, utilizing Kernel Principal Component Analysis (KPCA) method to reduce the dimensionality of the protein attribute information, and integrating module features and attribute features. Inputting integrated data into DNN through multiple hidden layers to classify proteins and predict protein functions. In the experiments, the F-measure value of IGP-DNN on the DIP dataset reaches 0.4436, which shows better performance.</p> </abstract>


2021 ◽  
pp. 1-14
Author(s):  
Zhaoming Lv ◽  
Rong Peng

The grasshopper optimization algorithm (GOA) has received extensive attention from scholars in various real applications in recent years because it has a high local optima avoidance mechanism compared to other meta-heuristic algorithms. However, the small step moves of grasshopper lead to slow convergence. When solving larger-scale optimization problems, this shortcoming needs to be solved. In this paper, an enhanced grasshopper optimization algorithm based on solitarious and gregarious states difference is proposed. The algorithm consists of three stages: the first stage simulates the behavior of solitarious population learning from gregarious population; the second stage merges the learned population into the gregarious population and updates each grasshopper; and the third stage introduces a local operator to the best position of the current generation. Experiments on the benchmark function show that the proposed algorithm is better than the four representative GOAs and other metaheuristic algorithms in more cases. Experiments on the ontology matching problem show that the proposed algorithm outperforms all metaheuristic-based method and beats more the state-of-the-art systems.


Author(s):  
Dawid Połap ◽  
Marcin Woźniak ◽  
Waldemar Hołubowski ◽  
Robertas Damaševičius

AbstractThe third type of neural network called spiking is developed due to a more accurate representation of neuronal activity in living organisms. Spiking neural networks have many different parameters that can be difficult to adjust manually to the current classification problem. The analysis and selection of coefficients’ values in the network can be analyzed as an optimization problem. A practical method for automatic selection of them can decrease the time needed to develop such a model. In this paper, we propose the use of a heuristic approach to analyze and select coefficients with the idea of collaborative working. The proposed idea is based on parallel analyzing of different coefficients and choosing the best of them or average ones. This type of optimization problem allows the selection of all variables, which can significantly affect the convergence of the accuracy. Our proposal was tested using network simulators and popular databases to indicate the possibilities of the described approach. Five different heuristic algorithms were tested and the best results were reached by Cuckoo Search Algorithm, Grasshopper Optimization Algorithm, and Polar Bears Algorithm.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Peng Qin ◽  
Hongping Hu ◽  
Zhengmin Yang

AbstractGrasshopper optimization algorithm (GOA) proposed in 2017 mimics the behavior of grasshopper swarms in nature for solving optimization problems. In the basic GOA, the influence of the gravity force on the updated position of every grasshopper is not considered, which possibly causes GOA to have the slower convergence speed. Based on this, the improved GOA (IGOA) is obtained by the two updated ways of the position of every grasshopper in this paper. One is that the gravity force is introduced into the updated position of every grasshopper in the basic GOA. And the other is that the velocity is introduced into the updated position of every grasshopper and the new position are obtained from the sum of the current position and the velocity. Then every grasshopper adopts its suitable way of the updated position on the basis of the probability. Finally, IGOA is firstly performed on the 23 classical benchmark functions and then is combined with BP neural network to establish the predicted model IGOA-BPNN by optimizing the parameters of BP neural network for predicting the closing prices of the Shanghai Stock Exchange Index and the air quality index (AQI) of Taiyuan, Shanxi Province. The experimental results show that IGOA is superior to the compared algorithms in term of the average values and the predicted model IGOA-BPNN has the minimal predicted errors. Therefore, the proposed IGOA is an effective and efficient algorithm for optimization.


Sign in / Sign up

Export Citation Format

Share Document