Research on Improved DV-HOP Localization Algorithm Based on Weighted Least Square Method

Author(s):  
Xie Chuan
2011 ◽  
Vol 317-319 ◽  
pp. 1078-1083 ◽  
Author(s):  
Qing Tao Lin ◽  
Xiang Bing Zeng ◽  
Xiao Feng Jiang ◽  
Xin Yu Jin

This paper establishes a 3-D localization model and based on this model, it proposes a collaborative localization framework. In this framework, node that observes the object sends its attitude information and the relative position of the object's projection in its camera to the cluster head. The cluster head adopts an algorithm proposed in this paper to select some nodes to participate localization. The localization algorithm is based on least square method. Because the localization framework is based on a 3-D model, the size of the object or other prerequisites is not necessary. At the end of this paper, a simulation is taken on the numbers of nodes selected to locate and the localization accuracy. The result implies that selecting 3~4 nodes is proper. The theoretical analysis and the simulation result also imply that a const computation time cost is paid in this framework with a high localization accuracy (in our simulation environment, a 0.01 meter error).


2015 ◽  
Vol 15 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Shuhei Matsuzawa ◽  
Kenta Mitsufuji ◽  
Yurika Miyake ◽  
Katsuhiro Hirata ◽  
Fumikazu Miyasaka

AbstractElectromagnetic levitation is a kind of magnetohydrodynamic phenomena which is useful to measure the thermo-physical properties of pure metals under high temperature. However, this phenomenon is complicated and detailed mechanisms of this phenomenon have not been clarified yet. This study proposes the meshless method based on weighted least square method for the analysis of electromagnetic levitation. In this study, the fluid motion equation and the magnetic field equation are coupled by this method. The behavior of a molten metal under high-frequency magnetic field is calculated by this method.


Sign in / Sign up

Export Citation Format

Share Document