Further improvements in the generalization capability of the BRAINNE technique for extracting symbolic knowledge from neural networks

Author(s):  
T. Hossain ◽  
T.S. Dillon
Author(s):  
Ramesh Adhikari ◽  
Suresh Pokharel

Data augmentation is widely used in image processing and pattern recognition problems in order to increase the richness in diversity of available data. It is commonly used to improve the classification accuracy of images when the available datasets are limited. Deep learning approaches have demonstrated an immense breakthrough in medical diagnostics over the last decade. A significant amount of datasets are needed for the effective training of deep neural networks. The appropriate use of data augmentation techniques prevents the model from over-fitting and thus increases the generalization capability of the network while testing afterward on unseen data. However, it remains a huge challenge to obtain such a large dataset from rare diseases in the medical field. This study presents the synthetic data augmentation technique using Generative Adversarial Networks to evaluate the generalization capability of neural networks using existing data more effectively. In this research, the convolutional neural network (CNN) model is used to classify the X-ray images of the human chest in both normal and pneumonia conditions; then, the synthetic images of the X-ray from the available dataset are generated by using the deep convolutional generative adversarial network (DCGAN) model. Finally, the CNN model is trained again with the original dataset and augmented data generated using the DCGAN model. The classification performance of the CNN model is improved by 3.2% when the augmented data were used along with the originally available dataset.


1997 ◽  
Vol 9 (1) ◽  
pp. 1-42 ◽  
Author(s):  
Sepp Hochreiter ◽  
Jürgen Schmidhuber

We present a new algorithm for finding low-complexity neural networks with high generalization capability. The algorithm searches for a “flat” minimum of the error function. A flat minimum is a large connected region in weight space where the error remains approximately constant. An MDL-based, Bayesian argument suggests that flat minima correspond to “simple” networks and low expected overfitting. The argument is based on a Gibbs algorithm variant and a novel way of splitting generalization error into underfitting and overfitting error. Unlike many previous approaches, ours does not require gaussian assumptions and does not depend on a “good” weight prior. Instead we have a prior over input output functions, thus taking into account net architecture and training set. Although our algorithm requires the computation of second-order derivatives, it has backpropagation's order of complexity. Automatically, it effectively prunes units, weights, and input lines. Various experiments with feedforward and recurrent nets are described. In an application to stock market prediction, flat minimum search outperforms conventional backprop, weight decay, and “optimal brain surgeon/optimal brain damage.”


2013 ◽  
Vol 2 (2) ◽  
pp. 66-79 ◽  
Author(s):  
Onsy A. Abdel Alim ◽  
Amin Shoukry ◽  
Neamat A. Elboughdadly ◽  
Gehan Abouelseoud

In this paper, a pattern recognition module that makes use of 3-D images of objects is presented. The proposed module takes advantage of both the generalization capability of neural networks and the possibility of manipulating 3-D images to generate views at different poses of the object that is to be recognized. This allows the construction of a robust 3-D object recognition module that can find use in various applications including military, biomedical and mine detection applications. The paper proposes an efficient training procedure and decision making strategy for the suggested neural network. Sample results of testing the module on 3-D images of several objects are also included along with an insightful discussion of the implications of the results.


2021 ◽  
Vol 11 (10) ◽  
pp. 2546-2557
Author(s):  
Sudha Subramaniam ◽  
K. B. Jayanthi ◽  
C. Rajasekaran ◽  
C. Sunder

Intima Media Thickness (IMT) of the carotid artery is an important marker indicating the sign of cardiovascular disease. Automated measurement of IMT requires segmentation of intima media complex (IMC).Traditional methods which use shape, color and texture for classification have poor generalization capability. This paper proposes two models- the pipeline model and the end-to-end model using Convolutional Neural Networks (CNN) and auto encoder–decoder network respectively. CNN architecture is implemented and tested by varying the number of convolutional layer, size of the kernel as well as the number of kernels. Auto encoder–decoder performs pixel wise classification using two interconnected pathways for identifying the boundary of lumen-intima (LI) and media adventitia (MA). This helps in reconstruction of the segmented portion for measurement of IMT. Both methods are tested using a dataset of 550 subjects. The results clearly indicate that end-to-end model has an edge over the pipeline model exhibiting lesser deviation between the automated measurement and the measurement made by the radiologist. The pipeline model however has better segmentation accuracy when the size of the image used for training is small. The convolutional neural network with auto encoder–decoder proves robust through sparse representation, and faster learning with better generalization. Also, the experimental setup is analyzed by interconnecting Tensor flow simulated result with Raspberry PI and the outcomes are analyzed.


Sign in / Sign up

Export Citation Format

Share Document