A distributed mobility management scheme for large-scale Mobile Networks

Author(s):  
Keita Kawano ◽  
Kazuhiko Kinoshita ◽  
Nariyoshi Yamai
2009 ◽  
pp. 650-681
Author(s):  
Samuel Pierre

This chapter analyzes and proposes some mobility management models and schemes by taking into account their capability to reduce search and location update costs in wireless mobile networks. The first model proposed is called the built-in memory model; it is based on the architecture of the IS-41 network and aims at reducing the home-location-register (HLR) access overhead. The performance of this model was investigated by comparing it with the IS-41 scheme for different call-to-mobility ratios (CMRs). Experimental results indicate that the proposed model is potentially beneficial for large classes of users and can yield substantial reductions in total user-location management costs, particularly for users who have a low CMR. These results also show that the cost reduction obtained on the location update is very significant while the extra costs paid to locate a mobile unit simply amount to the costs of crossing a single pointer between two location areas. The built-in memory model is also compared with the forwarding pointers’ scheme. The results show that this model consistently outperforms the forwarding pointers’ strategy. A second location management model to manage mobility in wireless communications systems is also proposed. The results show that significant cost savings can be obtained compared with the IS-41 standard location-management scheme depending on the value of the mobile units’ CMR.


Author(s):  
Battulga Davaasambuu

The rapidly-growing number of mobile subscribers has led to the creation of a large number of signalling messages. This makes it difficult to efficiently handle the mobility of subscribers in mobile cellular networks. The long-term evolution (LTE) architecture provides software-defined networking (SDN) to meet the requirements of 5G networks and to forward massive mobile data traffic. The SDN solution proposes separation of the control and data planes of a network. Centralized mobility management (CMM) is widely used in current mobile network technologies, such as 4G networks. One of the problems related to CMM is a single point of failure. To solve the problems of CMM and in order to provide for efficient mobility management, IETF has developed a solution called distributed mobility management (DMM), in which mobility is handled via the nearest mobility anchor. In this paper, we propose a DMM solution with handover operations for SDN-enabled mobile networks. The advantage of the proposed solution is that intra and inter handover procedures are defined with the data buffering and forwarding processes between base stations and mobility anchors. We adopt a simulation model to evaluate and compare the proposed solution with the existing solution in terms of handover latency, packet loss and handover failures.


2011 ◽  
pp. 213-250
Author(s):  
Samuel Pierre

This chapter analyzes and proposes some mobility management models and schemes by taking into account their capability to reduce search and location update costs in wireless mobile networks. The first model proposed is called the built-in memory model; it is based on the architecture of the IS-41 network and aims at reducing the home-location-register (HLR) access overhead. The performance of this model was investigated by comparing it with the IS-41 scheme for different call-to-mobility ratios (CMRs). Experimental results indicate that the proposed model is potentially beneficial for large classes of users and can yield substantial reductions in total user-location management costs, particularly for users who have a low CMR. These results also show that the cost reduction obtained on the location update is very significant while the extra costs paid to locate a mobile unit simply amount to the costs of crossing a single pointer between two location areas. The built-in memory model is also compared with the forwarding pointers’ scheme. The results show that this model consistently outperforms the forwarding pointers’ strategy. A second location management model to manage mobility in wireless communications systems is also proposed. The results show that significant cost savings can be obtained compared with the IS-41 standard location-management scheme depending on the value of the mobile units’ CMR.


Sign in / Sign up

Export Citation Format

Share Document