Proportional fairness in multi-carrier system: upper bound and approximation algorithms

2006 ◽  
Vol 10 (6) ◽  
pp. 462-464 ◽  
Author(s):  
M. Kaneko ◽  
P. Popovski ◽  
J. Dahl
Author(s):  
Jing Tang ◽  
Xueyan Tang ◽  
Andrew Lim ◽  
Kai Han ◽  
Chongshou Li ◽  
...  

Monotone submodular maximization with a knapsack constraint is NP-hard. Various approximation algorithms have been devised to address this optimization problem. In this paper, we revisit the widely known modified greedy algorithm. First, we show that this algorithm can achieve an approximation factor of 0.405, which significantly improves the known factors of 0.357 given by Wolsey and (1-1/e)/2\approx 0.316 given by Khuller et al. More importantly, our analysis closes a gap in Khuller et al.'s proof for the extensively mentioned approximation factor of (1-1/\sqrte )\approx 0.393 in the literature to clarify a long-standing misconception on this issue. Second, we enhance the modified greedy algorithm to derive a data-dependent upper bound on the optimum. We empirically demonstrate the tightness of our upper bound with a real-world application. The bound enables us to obtain a data-dependent ratio typically much higher than 0.405 between the solution value of the modified greedy algorithm and the optimum. It can also be used to significantly improve the efficiency of algorithms such as branch and bound.


Author(s):  
Govind S. Sankar ◽  
Anand Louis ◽  
Meghana Nasre ◽  
Prajakta Nimbhorkar

We consider the problem of assigning items to platforms in the presence of group fairness constraints. In the input, each item belongs to certain categories, called classes in this paper. Each platform specifies the group fairness constraints through an upper bound on the number of items it can serve from each class. Additionally, each platform also has an upper bound on the total number of items it can serve. The goal is to assign items to platforms so as to maximize the number of items assigned while satisfying the upper bounds of each class. This problem models several important real-world problems like ad-auctions, scheduling, resource allocations, school choice etc. We show that if the classes are arbitrary, then the problem is NP-hard and has a strong inapproximability. We consider the problem in both online and offline settings under natural restrictions on the classes. Under these restrictions, the problem continues to remain NP-hard but admits approximation algorithms with small approximation factors. We also implement some of the algorithms. Our experiments show that the algorithms work well in practice both in terms of efficiency and the number of items that get assigned to some platform.


2001 ◽  
Vol 120 (5) ◽  
pp. A142-A142
Author(s):  
J GASKEY ◽  
E SEIDEL

Sign in / Sign up

Export Citation Format

Share Document