cold rolling
Recently Published Documents


TOTAL DOCUMENTS

3617
(FIVE YEARS 597)

H-INDEX

56
(FIVE YEARS 11)

Author(s):  
Mohammed Gouda ◽  
Salah Salman ◽  
Saad Ebied

Abstract β-titanium alloys are essential in many applications, particularly biomedical applications. Ti-14Mn β-type alloy was produced using an electric arc furnace from raw alloying elements in an inert atmosphere. The alloy was homogenized at 1000 °C for 8 hr to ensure the complete composition distribution, followed by solution treatment at 900 °C, then quenched in ice water. The alloy was subjected to cold deformation via cold rolling with different ratios: 10, 30, and 90%. The phases change, microstructure, mechanical properties, and corrosion resistance of Ti-14Mn alloys were evaluated before and after cold rolling. The results showed that the β-phase is the only existed phase even after a high degree of deformation. The microstructure shows a combination of twinning and slipping deformation mechanisms in the deformed alloy. Microhardness values indicated a linear increase equal to 30% by increasing the ratio of cold deformation due to the strain hardening effect. The corrosion resistance of Ti-14Mn alloy was doubled after 90% cold rolling.


2022 ◽  
Vol 1049 ◽  
pp. 45-52
Author(s):  
Tatiana Kozlova

In this paper, we consider the effect of cold rolling and hydrogen alloying on the formation of twin boundaries of the corrosion resistance of austenitic steel 01Cr17Ni13Mo3. Using the method of transmission electronic microscopy, microdiffraction patterns were obtained. The analysis of microdiffraction patterns indicates the formation of a developed grain-subgrain structure with small-angle and large-angle misorientation. The structure has a high dislocation density, deformation twins and localized shift bands. It was established that plastic deformation by flat rolling to ε = 90 % at room temperature does not contribute to the appearance of a noticeable amount of α' and ε-martensite. At the temperature of liquid nitrogen, the samples were found to form a small fraction of the α'-martensite phase. Such a small amount of martensite can contribute to steel strengthening, and a decrease in the rolling temperature will lead to an increase in the strength properties of steel. It was detected that the density of twin boundaries under the decrease in the rolling temperature but with the same intensity of hydrogen saturation is significantly higher. A noticeable reduction in the width of the twin lamellas was revealed.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 92
Author(s):  
Naoto Kirekawa ◽  
Kaisei Saito ◽  
Minho O ◽  
Equo Kobayashi

Natural aging after solution treatment has a negative effect on the precipitation strengthening of Al–Mg–Si alloys since Cluster(1) formed at a room temperature cannot be dissolved or transformed into precipitates during artificial aging at 170 °C. In this study, cold rolling is focused on as an alternative solution to pre-aging, which is a conventional method to prevent Cluster(1) formation. It is known that excess vacancies are necessary for cluster formation. Cold rolling suppresses cluster formation because excess vacancies disappear at dislocations introduced by cold rolling. In addition, it is expected that cold rolling accelerates the precipitation behavior because the diffusion of solute atoms is promoted by introduced lattice defects. The transition of Cluster(1) was evaluated by Micro Vickers hardness tests, tensile tests, electrical conductivity measurements and differential scanning calorimetry analyses. Results showed the negative effect of natural aging was almost suppressed in 10% cold-rolled samples and completely suppressed in 30% cold-rolled samples since Cluster(1) dissolved during artificial aging at 170 °C due to lowering of the temperature of Cluster(1) dissolution by cold rolling. It was found that the precipitation in cold-rolled samples was accelerated since the hardness peak of 10% cold-rolled samples appeared earlier than T6 and pre-aged samples.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 95
Author(s):  
Lev B. Zuev ◽  
Svetlana A. Barannikova ◽  
Dina V. Orlova

Plastic deformation and fracture of Zr–1% Nb alloys exposed to quasi-static tensile testing have been studied via a joint analysis of stress-strain curves, ultrasound velocity and double-exposure speckle photographs. The possibilities of ductility evaluation through the εxx strain distribution in thin-walled parts of zirconium alloys are shown in this paper. The stress-strain state of zirconium alloys in a cold rolling site is investigated considering the development of localized deformation bands and changes in ultrasound velocity. It is established that the transition from the upsetting to the reduction region is accompanied by the significant exhaustion of the plasticity margin of the material; therefore, the latter is more prone to fracture in this zone exactly. It is shown that traditional methods estimating the plasticity margin from the mechanical properties cannot reveal this region, requiring a comprehensive study of macroscopically localized plastic strain in combination with acoustic measurements. In particular, the multi-pass cold rolling of Zr alloys includes various localized deformation processes that can result in the formation of localized plasticity autowaves. Recommendations for strain distribution division over the deformation zone length in the alloy in the pilger roll grooves are provided as well.


2022 ◽  
Vol 832 ◽  
pp. 142464
Author(s):  
Leiwen Wang ◽  
Jiaao Liu ◽  
Zhiyuan Wang ◽  
Weihong Zhang ◽  
Wenru Sun

Author(s):  
Tushar Ramdas Dandekar ◽  
Rajesh Kisni Khatirkar ◽  
Amit Kumar ◽  
Nitish Bibhanshu ◽  
Satyam Suwas

Sign in / Sign up

Export Citation Format

Share Document