Quantum Noise: Can One Beat The "Standard Quantum Limit"

2005 ◽  
Author(s):  
H.A. Haus
Author(s):  
M. Heurs

Interferometric gravitational wave detectors (such as advanced LIGO) employ high-power solid-state lasers to maximize their detection sensitivity and hence their reach into the universe. These sophisticated light sources are ultra-stabilized with regard to output power, emission frequency and beam geometry; this is crucial to obtain low detector noise. However, even when all laser noise is reduced as far as technically possible, unavoidable quantum noise of the laser still remains. This is a consequence of the Heisenberg Uncertainty Principle, the basis of quantum mechanics: in this case, it is fundamentally impossible to simultaneously reduce both the phase noise and the amplitude noise of a laser to arbitrarily low levels. This fact manifests in the detector noise budget as two distinct noise sources—photon shot noise and quantum radiation pressure noise—which together form a lower boundary for current-day gravitational wave detector sensitivities, the standard quantum limit of interferometry. To overcome this limit, various techniques are being proposed, among them different uses of non-classical light and alternative interferometer topologies. This article explains how quantum noise enters and manifests in an interferometric gravitational wave detector, and gives an overview of some of the schemes proposed to overcome this seemingly fundamental limitation, all aimed at the goal of higher gravitational wave event detection rates. This article is part of a discussion meeting issue ‘The promises of gravitational-wave astronomy’.


2021 ◽  
Author(s):  
James Thompson ◽  
Graham Greve ◽  
Chengyi Luo ◽  
Baochen Wu

Abstract Entanglement is a fundamental resource that allows quantum sensors to surpass the standard quantum limit set by the quantum collapse of independent atoms. Collective cavity-QED systems have succeeded in generating large amounts of directly observed entanglement involving the internal degrees of freedom of laser-cooled atomic ensembles. Here we demonstrate cavity-QED entanglement of external degrees of freedom to realize a matter-wave interferometer of 700 atoms in which each individual atom falls freely under gravity and simultaneously traverses two paths through space while also entangled with the other atoms. We demonstrate both quantum non-demolition measurements and cavity-mediated spin interactions for generating squeezed momentum states with directly observed metrological gain 3.4^{+1.1}_{-0.9} dB and 2.5^{+0.6}_{-0.6} dB below the standard quantum limit respectively. An entangled state is for the first time successfully injected into a Mach-Zehnder light-pulse interferometer with 1.7^{+0.5}_{-0.5} dB of directly observed metrological enhancement. These results open a new path for combining particle delocalization and entanglement for inertial sensors, searches for new physics, particles, and fields, future advanced gravitational wave detectors, and accessing beyond mean-field quantum many-body physics.


2019 ◽  
Vol 21 (9) ◽  
pp. 093047 ◽  
Author(s):  
C R Müller ◽  
F Sedlmeir ◽  
V O Martynov ◽  
Ch Marquardt ◽  
A V Andrianov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document