scholarly journals On the Optimality of Likelihood Ratio Test for Prospect Theory-Based Binary Hypothesis Testing

2018 ◽  
Vol 25 (12) ◽  
pp. 1845-1849 ◽  
Author(s):  
Sinan Gezici ◽  
Pramod K. Varshney
Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5140
Author(s):  
Yuan Huang ◽  
Liping Wang ◽  
Xueying Wang ◽  
Wei An

The extended target Gaussian inverse Wishart probability hypothesis density (ET-GIW-PHD) filter overestimates the number of targets under high clutter density. The reason for this is that the source of measurements cannot be determined correctly if only the number of measurements is used. To address this problem, we proposed an anti-clutter filter with hypothesis testing, we take into account the number of measurements in cells, the target state and spatial distribution of clutter to decide whether the measurements in cell are clutter. Specifically, the hypothesis testing method is adopted to determine the origination of the measurements. Then, the likelihood functions of targets and clutter are deduced based on the information mentioned above, resulting in the likelihood ratio test statistic. Next, the likelihood ratio test statistic is proved to be subject to a chi-square distribution and a threshold corresponding to the confidence coefficient is introduced and the measurements below this threshold are considered as clutter. Then the correction step of ET-GIW-PHD is revised based on hypothesis testing results. Extensive experiments have demonstrated the significant performance improvement of our proposed method.


2013 ◽  
Vol 17 (9) ◽  
pp. 1629-1641 ◽  
Author(s):  
H. Moheb Alizadeh ◽  
A. R. Arshadi Khamseh ◽  
S. M. T. Fatemi Ghomi

2018 ◽  
Vol 8 (1) ◽  
pp. 98-114 ◽  
Author(s):  
R. Lehmann ◽  
M. Lösler

Abstract In geodesy, hypothesis testing is applied to a wide area of applications e.g. outlier detection, deformation analysis or, more generally, model optimisation. Due to the possible far-reaching consequences of a decision, high statistical test power of such a hypothesis test is needed. The Neyman-Pearson lemma states that under strict assumptions the often-applied likelihood ratio test has highest statistical test power and may thus fulfill the requirement. The application, however, is made more difficult as most of the decision problems are non-linear and, thus, the probability density function of the parameters does not belong to the well-known set of statistical test distributions. Moreover, the statistical test power may change, if linear approximations of the likelihood ratio test are applied. The influence of the non-linearity on hypothesis testing is investigated and exemplified by the planar coordinate transformations. Whereas several mathematical equivalent expressions are conceivable to evaluate the rotation parameter of the transformation, the decisions and, thus, the probabilities of type 1 and 2 decision errors of the related hypothesis testing are unequal to each other. Based on Monte Carlo integration, the effective decision errors are estimated and used as a basis of valuation for linear and non-linear equivalents.


2018 ◽  
Author(s):  
Loc Nguyen

Multivariate hypothesis testing becomes more and more necessary when data is in the process of changing from scalar and univariate format to multivariate format, especially financial and biological data is often constituted of n-dimension vectors. Likelihood ratio test is the best method that applies the test on mean of multivariate sample with known or unknown covariance matrix but it is impossible to use likelihood ratio test in case of incomplete data when the data incompletion gets popular because of many reasons in reality. Therefore, this research proposes a new approach that gives an ability to apply likelihood ratio test into incomplete data. Instead of replacing missing values in incomplete sample by estimated values, this approach classifies incomplete sample into groups and each group is represented by a potential or partial distribution. All partial distributions are unified into a mixture model which is optimized via expectation maximization (EM) algorithm. Finally, likelihood ratio test is performed on mixture model instead of incomplete sample. This research provides a thorough description of proposed approach and mathematical proof that is necessary to such approach. The comparison of mixture model approach and filling missing values approach is also discussed in this research.


1997 ◽  
Vol 61 (4) ◽  
pp. 335-350 ◽  
Author(s):  
A. P. MORRIS ◽  
J. C. WHITTAKER ◽  
R. N. CURNOW

Sign in / Sign up

Export Citation Format

Share Document