Robust sliding mode controller for turbocharged diesel engine with parameter perturbations

Author(s):  
D.N. Malkhede ◽  
B. Setht
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Sofiane Ahmed Ali ◽  
Nicolas Langlois

The paper develops a sliding mode controller via nonlinear disturbance observer for diesel engine air path system subject to matched and unmatched disturbances. The proposed controller is based upon a novel nonlinear disturbance observer (NDO) structure which uses the concept of total disturbance estimation in order to estimate simultaneously the matched and the unmatched disturbances in the system. This estimation is then incorporated in a composite controller which alleviates the chattering problem and maintains the nominal performance of the system in the absence of disturbances. Simulations results of the proposed controller on a recently validated experimental air path diesel engine model show that the proposed methods exhibit a better performances comparing to the baseline SMC in terms of reducing chattering and nominal performances recovery.


Author(s):  
Samia Larguech ◽  
Sinda Aloui ◽  
Olivier Pagès ◽  
Ahmed El Hajjaji ◽  
Abdessattar Chaari

In this work, fuzzy second-order sliding mode control (2-SMC) and adaptive sliding mode control (ASMC) are developed for a turbocharged diesel engine (TDE). In control design, the TDE is represented by multi-output multi-input (MIMO) nonlinear model with partially unknown dynamics. To regulate the intake manifold pressure, the exhaust manifold pressure, the compressor flow, and to estimate the unknown functions, a sliding mode control (SMC) combined with fuzzy logic is first developed. Second to reduce the chattering phenomenon without deteriorating the tracking performance, two approaches are investigated. A special case of the 2-SMC: the super-twisting SMC is developed. The results obtained using the ASMC are also presented to compare the performances of both methods. All parameter adaptive laws and robustifying control terms are derived based on Lyapunov stability analysis, so that convergence to zero of tracking errors and boundedness of all signals in the closed-loop system are guaranteed. Simulation results are given to show the efficiency of the proposed approaches.


Sign in / Sign up

Export Citation Format

Share Document