Adaptive Sliding Mode Control for a class of nonlinear MIMO systems: Application to a Turbocharged Diesel Engine

Author(s):  
S. Larguech ◽  
S. Aloui ◽  
O. Pages ◽  
A. El Hajjaji ◽  
A. Chaari
Author(s):  
Samia Larguech ◽  
Sinda Aloui ◽  
Olivier Pagès ◽  
Ahmed El Hajjaji ◽  
Abdessattar Chaari

In this work, fuzzy second-order sliding mode control (2-SMC) and adaptive sliding mode control (ASMC) are developed for a turbocharged diesel engine (TDE). In control design, the TDE is represented by multi-output multi-input (MIMO) nonlinear model with partially unknown dynamics. To regulate the intake manifold pressure, the exhaust manifold pressure, the compressor flow, and to estimate the unknown functions, a sliding mode control (SMC) combined with fuzzy logic is first developed. Second to reduce the chattering phenomenon without deteriorating the tracking performance, two approaches are investigated. A special case of the 2-SMC: the super-twisting SMC is developed. The results obtained using the ASMC are also presented to compare the performances of both methods. All parameter adaptive laws and robustifying control terms are derived based on Lyapunov stability analysis, so that convergence to zero of tracking errors and boundedness of all signals in the closed-loop system are guaranteed. Simulation results are given to show the efficiency of the proposed approaches.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Jiangbin Wang ◽  
Ling Liu ◽  
Chongxin Liu ◽  
Xiaoteng Li

The main purpose of the paper is to control chaotic oscillation in a complex seven-dimensional power system model. Firstly, in view that there are many assumptions in the design process of existing adaptive controllers, an adaptive sliding mode control scheme is proposed for the controlled system based on equivalence principle by combining fixed-time control and adaptive control with sliding mode control. The prominent advantage of the proposed adaptive sliding mode control scheme lies in that its design process breaks through many existing assumption conditions. Then, chaotic oscillation behavior of a seven-dimensional power system is analyzed by using bifurcation and phase diagrams, and the proposed strategy is adopted to control chaotic oscillation in the power system. Finally, the effectiveness and robustness of the designed adaptive sliding mode chaos controllers are verified by simulation.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 40076-40085
Author(s):  
Ngoc Phi Nguyen ◽  
Nguyen Xuan Mung ◽  
Ha Le Nhu Ngoc Thanh ◽  
Tuan Tu Huynh ◽  
Ngoc Tam Lam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document