Real-time arbitrary-view acquisition system by using random access IBR camera array

Author(s):  
R. Oi ◽  
T. Hamamoto ◽  
K. Aizawa
Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 546
Author(s):  
Zhenni Li ◽  
Haoyi Sun ◽  
Yuliang Gao ◽  
Jiao Wang

Depth maps obtained through sensors are often unsatisfactory because of their low-resolution and noise interference. In this paper, we propose a real-time depth map enhancement system based on a residual network which uses dual channels to process depth maps and intensity maps respectively and cancels the preprocessing process, and the algorithm proposed can achieve real-time processing speed at more than 30 fps. Furthermore, the FPGA design and implementation for depth sensing is also introduced. In this FPGA design, intensity image and depth image are captured by the dual-camera synchronous acquisition system as the input of neural network. Experiments on various depth map restoration shows our algorithms has better performance than existing LRMC, DE-CNN and DDTF algorithms on standard datasets and has a better depth map super-resolution, and our FPGA completed the test of the system to ensure that the data throughput of the USB 3.0 interface of the acquisition system is stable at 226 Mbps, and support dual-camera to work at full speed, that is, 54 fps@ (1280 × 960 + 328 × 248 × 3).


Author(s):  
Jahwan Koo ◽  
Nawab Muhammad Faseeh Qureshi ◽  
Isma Farah Siddiqui ◽  
Asad Abbas ◽  
Ali Kashif Bashir

Abstract Real-time data streaming fetches live sensory segments of the dataset in the heterogeneous distributed computing environment. This process assembles data chunks at a rapid encapsulation rate through a streaming technique that bundles sensor segments into multiple micro-batches and extracts into a repository, respectively. Recently, the acquisition process is enhanced with an additional feature of exchanging IoT devices’ dataset comprised of two components: (i) sensory data and (ii) metadata. The body of sensory data includes record information, and the metadata part consists of logs, heterogeneous events, and routing path tables to transmit micro-batch streams into the repository. Real-time acquisition procedure uses the Directed Acyclic Graph (DAG) to extract live query outcomes from in-place micro-batches through MapReduce stages and returns a result set. However, few bottlenecks affect the performance during the execution process, such as (i) homogeneous micro-batches formation only, (ii) complexity of dataset diversification, (iii) heterogeneous data tuples processing, and (iv) linear DAG workflow only. As a result, it produces huge processing latency and the additional cost of extracting event-enabled IoT datasets. Thus, the Spark cluster that processes Resilient Distributed Dataset (RDD) in a fast-pace using Random access memory (RAM) defies expected robustness in processing IoT streams in the distributed computing environment. This paper presents an IoT-enabled Directed Acyclic Graph (I-DAG) technique that labels micro-batches at the stage of building a stream event and arranges stream elements with event labels. In the next step, heterogeneous stream events are processed through the I-DAG workflow, which has non-linear DAG operation for extracting queries’ results in a Spark cluster. The performance evaluation shows that I-DAG resolves homogeneous IoT-enabled stream event issues and provides an effective stream event heterogeneous solution for IoT-enabled datasets in spark clusters.


Author(s):  
Cheyma BARKA ◽  
Hanen MESSAOUDI-ABID ◽  
Houda BEN ATTIA SETTHOM ◽  
Afef BENNANI-BEN ABDELGHANI ◽  
Ilhem SLAMA-BELKHODJA ◽  
...  

2021 ◽  
Vol 1768 (1) ◽  
pp. 012017
Author(s):  
K Burhanudin ◽  
M H Jusoh ◽  
Z I Abdul Latiff ◽  
M S Suaimi ◽  
Z Ibrahim ◽  
...  

1986 ◽  
Vol 17 (5) ◽  
pp. 285-296 ◽  
Author(s):  
Massimo Annunziata ◽  
Giuseppe Cima ◽  
Paola Mantica ◽  
Giacomo R. Sechi

Sign in / Sign up

Export Citation Format

Share Document