iir filter
Recently Published Documents


TOTAL DOCUMENTS

599
(FIVE YEARS 80)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Hemant Amhia ◽  
A. K. Wadhwani

Electrocardiogram (ECG) is commonly used biological signals that show an important role in cardiac analysis. The interpretation and acquisition of QRS complex are significant measures of ECG data dispensation. The R wave has a vital character in the analysis of cardiac rhythm irregularities as well as in the determination of heart rate variability (HRV). This manuscript is proposed to design a new artificial-intelligence-based approach of QRS peak detection and classification of the ECG data. The design of reduced order IIR filter is proposed for the low pass smoothening of the ECG signal data. The min-max optimization is used for optimizing the filter coefficient to design the reduced order filter. In this research paper, elimination of baseline wondering and the power line interferences from the ECG signal is of main attention. The result presented that the accuracy is increased by around 13% over the basic Pan–Tompkins method and around 8% over the existing FIR-filter-based classification rules.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Xiaodan Liang ◽  
Dong Wu ◽  
Yang Liu ◽  
Maowei He ◽  
Liling Sun

In the past few decades, metaheuristic algorithms (MA) have been developed tremendously and have been successfully applied in many fields. In recent years, a large number of new MA have been proposed. Slime mould algorithm (SMA) is a novel swarm-based intelligence optimization algorithm. SMA solves the optimization problem by imitating the foraging and movement behavior of slime mould. It can effectively obtain a promising global optimal solution. However, it still suffers some shortcomings such as the unstable convergence speed, the imprecise search accuracy, and incapability of identifying a local optimal solution when faced with complicated optimization problems. With the purpose of overcoming the shortcomings of SMA, this paper proposed a multistrategy enhanced version of SMA called ESMA. The three enhanced strategies are chaotic initialization strategy (CIS), orthogonal learning strategy (OLS), and boundary reset strategy (BRS). The CIS is used to generate an initial population with diversity in the early stage of ESMA, which can increase the convergence speed of the algorithm and the quality of the final solution. Then, the OLS is used to discover the useful information of the best solutions and offer a potential search direction, which enhances the local search ability and raises the convergence rate. Finally, the BRS is used to correct individual positions, which ensures the population diversity and enhances the overall search capabilities of ESMA. The performance of ESMA was validated on the 30 IEEE CEC2014 functions and three IIR model identification problems, compared with other nine well-regarded and state-of-the-art algorithms. Simulation results and analysis prove that the ESMA has a superior performance. The three strategies involved in ESMA have significantly improved the performance of the basic SMA.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 785
Author(s):  
Maria-Alexandra Paun ◽  
Vladimir-Alexandru Paun ◽  
Viorel-Puiu Paun

The present paper discusses the climatic effects of humidity and temperature on cochlear implant functioning and the quality of the electrical sound signal. MATLAB Simulink simulations were prepared, offering insights into signal behavior under such climatic parameter changes. A simulation setup of the cochlear implant was developed, where a source type selection was used to change between a voice recording and a “chirp” sound. In addition, a DC blocking filter was applied to the input signal. A simulation code, with the application of the climatic influence via the air attenuation function, was developed. Thereby, the attenuation of temperature and humidity in the sound atmospheric circulation of the input signal, at T = 0 °C and RH = 0% and at T = 36 °C and RH = 40% was graphically represented. The results of the electrical pulse generator for each of the eight channels, with the IIR filter, Gaussian noise, temperature variation, humidity influence, and control of denoise block activity, were thus obtained.


Author(s):  
Raaed Faleh Hassan

The work presented in this paper illuminates the design and simulation of a recursive or Infinite Impulse Response (IIR) filter. The proposed design algorithm employs the Genetic Algorithm to determine the filter coefficients to satisfy the required performance. The effectiveness of different platforms on filter design and performance has been studied in this paper. Three different platforms are considered to implement and verify the designed filter’s work through simulation. The first platform is the MATLAB/SIMULINK software package used to implement the Biquad form filter. This technique is the basis for the software implementation of the designed IIR filter. The HDL – Cosimulation technique is considered the second one; it inspired to take advantage of the existing tools in SIMULINK to convert the designed filter algorithm to the Very high-speed integrated circuit Hardware Description Language (VHDL) format. The System Generator is employed as the third technique, in which the designed filter is implemented as a hardware structure based on basic unit blocks provided by Xilinx System Generator. This technique facilitates the implementation of the designed filter in the FPGA target device. Simulation results show that the performance of the designed filter is remarkably reliable even with severe noise levels.


Author(s):  
Vladislav Lesnikov ◽  
Tatiana Naumovich ◽  
Alexander Chastikov

2021 ◽  
Vol 67 ◽  
pp. 102431
Author(s):  
Ngoc Thang Bui ◽  
Thi My Tien Nguyen ◽  
Sumin Park ◽  
Jaeyeop Choi ◽  
Thi Mai Thien Vo ◽  
...  

2021 ◽  
Vol 1152 (1) ◽  
pp. 012026
Author(s):  
N. T. Gadawe ◽  
T.A. Fathi ◽  
S.L. Qaddoori ◽  
R. W. Hamad
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document