depth sensing
Recently Published Documents


TOTAL DOCUMENTS

679
(FIVE YEARS 139)

H-INDEX

47
(FIVE YEARS 6)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Sungmin Cho ◽  
Won Kee Chang ◽  
Jihong Park ◽  
Seung Hyun Lee ◽  
Jongseung Lee ◽  
...  

AbstractPrism Adaptation (PA) is used to alleviate spatial neglect. We combined immersive virtual reality with a depth-sensing camera to develop virtual prism adaptation therapy (VPAT), which block external visual cues and easily quantify and monitor errors than conventional PA. We conducted a feasibility study to investigate whether VPAT can induce behavioral adaptations by measuring after-effect and identifying which cortical areas were most significantly activated during VPAT using functional near-infrared spectroscopy (fNIRS). Fourteen healthy subjects participated in this study. The experiment consisted of four sequential phases (pre-VPAT, VPAT-10°, VPAT-20°, and post-VPAT). To compare the most significantly activated cortical areas during pointing in different phases against pointing during the pre-VPAT phase, we analyzed changes in oxyhemoglobin concentration using fNIRS during pointing. The pointing errors of the virtual hand deviated to the right-side during early pointing blocks in the VPAT-10° and VPAT-20° phases. There was a left-side deviation of the real hand to the target in the post-VPAT phase, demonstrating after-effect. The most significantly activated channels during pointing tasks were located in the right hemisphere, and possible corresponding cortical areas included the dorsolateral prefrontal cortex and frontal eye field. In conclusion, VPAT may induce behavioral adaptation with modulation of the dorsal attentional network.


2021 ◽  
Vol 7 ◽  
Author(s):  
Céline Noël ◽  
Lennaert Wouters ◽  
Kristof Paredis ◽  
Umberto Celano ◽  
Thomas Hantschel

The ever-increasing complexity of semiconductor devices requires innovative three-dimensional materials characterization techniques for confined volumes. Multiple atomic force microscopy (AFM)-based methodologies, using a slice-and-measure approach have been proposed to meet this demand. They consist of scanning AFM probes that erode locally the sample’s material at a relatively high load while sensing with the secondary AFM channel, thus accessing in-depth information compared to the standard surface-limited analysis. Nonetheless, the rapid tip apex wear caused by the high forces involved, and the debris accumulation at the tip apex and inside/around the scan area, have been identified as major limitations to the accuracy and repeatability of the existing tomographic AFM sensing methods. Here we explore the use of oil as a suitable medium to overcome some of the issues such as the scan debris accumulation and the removal variability when working in air. We show how the use of oil preserves the tomographic operation while improving the efficiency in material removal for large depth sensing at a reduced debris accumulation. This is reported by comparing the results between air and oil environments, where the removal rate, depth accuracy, and tip-contamination are benchmarked. Finally, we provide the first demonstration of electrical AFM sensing using scanning spreading resistance microscopy (SSRM) in oil.


2021 ◽  
Author(s):  
Ruixiao Li ◽  
SHANTING HU ◽  
Xiaodong Gu ◽  
Fumio Koyama

Author(s):  
Wenjian Yang ◽  
Ma Luo ◽  
Yanfei Gao ◽  
Jinju Chen

We present a computational model of the mechanosensing of a fibroblast cell seeded on the materials with different stiffnesses and thicknesses. The model can predict the critical thickness of a given biomaterial that a cell can sense and the dynamic change of stress fibres and focal adhesions through its incorporation of the dynamic characteristics of stress fibre contraction and focal adhesion. We show that the cell-cell communication via elastic substrate induces the orientation of stress fibres. The cell-cell interaction through compliant substrate has a small but significant effect on enhancing the cell depth sensing capability in terms of interfacial displacement and stress fibre concentration. The framework developed here is important for a thorough understanding of processes where substrates are deformed such as in wound healing process and the design of bioactive coatings for tissue engineering.


2021 ◽  
Author(s):  
Manasi Muglikar ◽  
Diederik Paul Moeys ◽  
Davide Scaramuzza
Keyword(s):  

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1453
Author(s):  
Hyun Myung Kim ◽  
Min Seok Kim ◽  
Sehui Chang ◽  
Jiseong Jeong ◽  
Hae-Gon Jeon ◽  
...  

The light field camera provides a robust way to capture both spatial and angular information within a single shot. One of its important applications is in 3D depth sensing, which can extract depth information from the acquired scene. However, conventional light field cameras suffer from shallow depth of field (DoF). Here, a vari-focal light field camera (VF-LFC) with an extended DoF is newly proposed for mid-range 3D depth sensing applications. As a main lens of the system, a vari-focal lens with four different focal lengths is adopted to extend the DoF up to ~15 m. The focal length of the micro-lens array (MLA) is optimized by considering the DoF both in the image plane and in the object plane for each focal length. By dividing measurement regions with each focal length, depth estimation with high reliability is available within the entire DoF. The proposed VF-LFC is evaluated by the disparity data extracted from images with different distances. Moreover, the depth measurement in an outdoor environment demonstrates that our VF-LFC could be applied in various fields such as delivery robots, autonomous vehicles, and remote sensing drones.


Solids ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 331-340
Author(s):  
Zoltán Gyurkó ◽  
Rita Nemes

The present paper deals with the hardness of cement mortars prepared with recycled materials that are potential supplementary cementitious materials (SCM). Two potential SCMs (aerated concrete powder (ACP) and concrete powder) were investigated and compared with a reference (neat cement) sample and a sample containing metakaolin (MK). The long-term performance of the mortars was studied up to the age of one year. Based on the compressive strength tests at different ages, neither concrete powder nor ACP significantly decreases the compressive strength at a 10% substitution ratio. The samples were studied with two types of static hardness tests: the Brinell hardness test and the depth sensing indentation test at two different load levels. The hardness test results indicated that the standard deviation of the results is lower at a higher load level. In the case of metakaolin and concrete powder, the change in the compressive strength was observable in the hardness test results. However, in case of the ACP, the compressive strength decreased, while the hardness increased, which can be traced back to the filler effect of aerated concrete powder. Finally, using the DSI test, the hardness results were analyzed on an energy basis. The analysis highlighted that the change in the hardness is connected to the elastic indentation energy, while it is independent from the dissipated (plastic) indentation energy.


2021 ◽  
Author(s):  
Botao He ◽  
Haojia Li ◽  
Siyuan Wu ◽  
Dong Wang ◽  
Zhiwei Zhang ◽  
...  

2021 ◽  
Author(s):  
Smit Malkan ◽  
Sampras Dsouza ◽  
Soumyaprakash Dasmohapatra ◽  
Manav Jain ◽  
Abhijit Joshi

Sign in / Sign up

Export Citation Format

Share Document