BSTN: An Effective Framework for Compressed Video Quality Enhancement

Author(s):  
Xiandong Meng ◽  
Xuan Deng ◽  
Shuyuan Zhu ◽  
Bing Zeng
2020 ◽  
Vol 34 (07) ◽  
pp. 10696-10703 ◽  
Author(s):  
Jianing Deng ◽  
Li Wang ◽  
Shiliang Pu ◽  
Cheng Zhuo

Recent years have witnessed remarkable success of deep learning methods in quality enhancement for compressed video. To better explore temporal information, existing methods usually estimate optical flow for temporal motion compensation. However, since compressed video could be seriously distorted by various compression artifacts, the estimated optical flow tends to be inaccurate and unreliable, thereby resulting in ineffective quality enhancement. In addition, optical flow estimation for consecutive frames is generally conducted in a pairwise manner, which is computational expensive and inefficient. In this paper, we propose a fast yet effective method for compressed video quality enhancement by incorporating a novel Spatio-Temporal Deformable Fusion (STDF) scheme to aggregate temporal information. Specifically, the proposed STDF takes a target frame along with its neighboring reference frames as input to jointly predict an offset field to deform the spatio-temporal sampling positions of convolution. As a result, complementary information from both target and reference frames can be fused within a single Spatio-Temporal Deformable Convolution (STDC) operation. Extensive experiments show that our method achieves the state-of-the-art performance of compressed video quality enhancement in terms of both accuracy and efficiency.


2012 ◽  
Vol 532-533 ◽  
pp. 1219-1224
Author(s):  
Hong Tao Deng

During video transmission over error prone network, compressed video bit-stream is sensitive to channel errors that may degrade the decoded pictures severely. In order to solve this problem, error concealment technique is a useful post-processing tool for recovering the lost information. In these methods, how to estimate the lost motion vector correctly is important for the quality of decoded picture. In order to recover the lost motion vector, an Decoder Motion Vector Estimation (DMVE) criterion was proposed and have well effect for recover the lost blocks. In this paper, we propose an improved error concealment method based on DMVE, which exploits the accurate motion vector by using redundant motion vector information. The experimental results with an H.264 codec show that our method improves both subjective and objective decoder reconstructed video quality, especially for sequences of drastic motion.


2019 ◽  
Vol 17 (6) ◽  
pp. 2047-2063
Author(s):  
Taha T. Alfaqheri ◽  
Abdul Hamid Sadka

AbstractTransmission of high-resolution compressed video on unreliable transmission channels with time-varying characteristics such as wireless channels can adversely affect the decoded visual quality at the decoder side. This task becomes more challenging when the video codec computational complexity is an essential factor for low delay video transmission. High-efficiency video coding (H.265|HEVC) standard is the most recent video coding standard produced by ITU-T and ISO/IEC organisations. In this paper, a robust error resilience algorithm is proposed to reduce the impact of erroneous H.265|HEVC bitstream on the perceptual video quality at the decoder side. The proposed work takes into consideration the compatibility of the algorithm implementations with and without feedback channel update. The proposed work identifies and locates the frame’s most sensitive areas to errors and encodes them in intra mode. The intra-refresh map is generated at the encoder by utilising a grey projection method. The conducted experimental work includes testing the codec performance with the proposed work in error-free and error-prone conditions. The simulation results demonstrate that the proposed algorithm works effectively at high packet loss rates. These results come at the cost of a slight increase in the encoding bit rate overhead and computational processing time compared with the default HEVC HM16 reference software.


Author(s):  
Zhenyu Guan ◽  
Qunliang Xing ◽  
Mai Xu ◽  
Ren Yang ◽  
Tie Liu ◽  
...  

2020 ◽  
pp. 1-14
Author(s):  
Dandan Ding ◽  
Wenyu Wang ◽  
Junchao Tong ◽  
Xinbo Gao ◽  
Zoe Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document