motion vector
Recently Published Documents


TOTAL DOCUMENTS

1111
(FIVE YEARS 155)

H-INDEX

36
(FIVE YEARS 5)

Author(s):  
Zengfang Shi ◽  
Meizhou Liu

The existing target detection and recognition technology has the problem of fuzzy features of moving vehicles, which leads to poor detection effect. A moving car detection and recognition technology based on artificial intelligence is designed. The point operation is adopted to enhance the high frequency information of the image, increase the image contrast, and delineate the video image tracking target. The motion vector similarity is used to predict the moving target area in the next frame of the image. The texture features of the moving car are extracted by artificial intelligence, and the center moment is calculated by the gray histogram distribution curve, the edge feature extraction algorithm is used to set the detection and recognition mode. Experimental results: under complex conditions, this design technology, compared with the other two kinds of moving vehicle detection and recognition technology, detected three more moving vehicles, which proved that the application prospect of the moving vehicle detection and recognition technology integrated with artificial intelligence is broader.


Author(s):  
Jinrui Zhang ◽  
Deyu Zhang ◽  
Huan Yang ◽  
Yunxin Liu ◽  
Ju Ren ◽  
...  

MAUSAM ◽  
2021 ◽  
Vol 63 (1) ◽  
pp. 1-16
Author(s):  
KULDEEP SRIVASTAVA ◽  
SHARONS.Y LAU ◽  
H.Y. YEUNG ◽  
T.L. CHENG ◽  
RASHMI BHARDWAJ ◽  
...  

Local severe storms are extreme weather events that last only for a few hours and evolve rapidly. Very often the mesoscale features associated these local severe storms are not well-captured synoptically. Forecasters have to predict the changing weather situation in the next 0-6 hrs based on latest observations. The operational process to predict the weather in the next 0-6 hrs is known as “nowcast”. Observational data that are typically suited for nowcasting includes Doppler Weather Radar (DWR), wind profiler, microwave sounder and satellite radiance. To assist forecasters, in predicting the weather information and making warning decisions, various nowcasting systems have been developed by various countries in recent years. Notable examples are Auto-Nowcaster (U.S.), BJ-ANC (China-U.S.), CARDS (Canada), GRAPES-SWIFT (China), MAPLE (Canada), NIMROD (U.K.), NIWOT (U.S.), STEPS (Australia), SWIRLS (Hong Kong, China), TIFS (Australia), TITAN (U.S.) (Dixon and Wiener, 1993) and WDSS (U.S.). Some of these systems were used in the two forecast demonstration projects organized by WMO for the Sydney 2000 and Beijing 2008 Olympic. A common feature of these systems is that they all use rapidly updated radar data, typically once every 6 minutes.The nowcasting system SWIRLS (“Short-range Warning of Intense Rainstorms in Localized Systems”) has been developed by the Hong Kong Observatory (HKO) and was put into operation in Hong Kong in 1999. Since then system has undergone several upgrades, the latest known as “SWIRLS-2” to support the Beijing 2008 Olympic Games. SWIRLS-2 is being adapted by India Meteorological Department (IMD) for use and test for the Commonwealth Games 2010 at New Delhi with assistance from HKO. SWIRLS-2 ingests a range of observation data including SIGMET/IRIS DWR radar product, raingauge data, radiosonde data, lightning data to analyze and predict reflectivity, radar-echo motion, QPE, QPF, as well as track of thunderstorm and its associated severe weather, including cloud-to-ground lightning, severe squalls and hail, and probability of precipitation. SWIRLS-2 uses a number of algorithms to derive the storm motion vectors. These include TREC (“Tracking of Radar Echoes by Correlation”), GTrack (Group tracking of radar echoes, an object-oriented technique for tracking the movement of a storm as a whole entity) and lately MOVA (“Multi-scale Optical flow by Variational Analysis”). This latest algorithm uses optical flow, a technique commonly used in motion detection in image processing, and variational analysis to derive the motion vector field. By cascading through a range of scales, MOVA can better depict the actual storm motion vector field as compared with TREC and GTrack which does well in tracking small scales features and storm entity respectively. In this paper the application of TREC and MOVA to derive the storm motion vector, reflectivity and QPF using Indian DWR data has been demonstrated for the thunderstorm events over Kolkata and New Delhi. The system has been successfully operationalized for Delhi and neighborhood area for commonwealth games 2010. Real time products are available on IMD website


2021 ◽  
Author(s):  
Vishal Pandey

In the General Theory of Relativity it is being introduced that the energy of motion is converted to the mass of that particle or matter or we can say that are interchangeable. It has a wide range use in the nuclear physics. The whole equation 𝑬 = 𝒎𝒄 𝟐 is a relativistic mass-energy equivalence and the term “mass” is also relativistic in nature. In special relativity, however, the energy of a body at rest is determined to be 𝒎𝒄 𝟐 . Thus, each body of rest mass m possesses 𝒎𝒄 𝟐 of “rest energy,” which potentially is available for conversion to other forms of energy. Here we initiated a equation from this if the Energy of motion has a vector form and it is in 3D space model as we know the energy of motion converted it to mass here we can do it by quantum mechanics. We think of that if the energy of motion is equal to the kinetic energy (time-independent equation from the Schrödinger equations) then we can solve the vector form of the energy and can find how much mass is being converted from the energy of motion(vector form). Here we have taken the kinetic energy from the Schrödinger equations not that from kinematics if we do then the speed of light will be equal to the velocity of that particle, which is violating the law of relativity thus I used the Schrödinger equations for simplicity .We got the equation and we have to do some calculation of the partial differentials and if the value of 𝑴′ is coming to be negative then the particle doesn’t exist and else we can find the mass converted and also the existence of that particle or matter of the universe. By this process, we can get the mass, the existence of matter/particle in this universe for that instance. We can use it if the energy is in the vector form and given some distance traveled in vacuum/air for some definite time we will get the desired result of mass.


2021 ◽  
Author(s):  
Vishal Pandey

In the General Theory of Relativity it is being introduced that the energy of motion is converted to the mass of that particle or matter or we can say that are interchangeable. It has a wide range use in the nuclear physics. The whole equation 𝑬 = 𝒎𝒄 𝟐 is a relativistic mass-energy equivalence and the term “mass” is also relativistic in nature. In special relativity, however, the energy of a body at rest is determined to be 𝒎𝒄 𝟐 . Thus, each body of rest mass m possesses 𝒎𝒄 𝟐 of “rest energy,” which potentially is available for conversion to other forms of energy. Here we initiated a equation from this if the Energy of motion has a vector form and it is in 3D space model as we know the energy of motion converted it to mass here we can do it by quantum mechanics. We think of that if the energy of motion is equal to the kinetic energy (time-independent equation from the Schrödinger equations) then we can solve the vector form of the energy and can find how much mass is being converted from the energy of motion(vector form). Here we have taken the kinetic energy from the Schrödinger equations not that from kinematics if we do then the speed of light will be equal to the velocity of that particle, which is violating the law of relativity thus I used the Schrödinger equations for simplicity .We got the equation and we have to do some calculation of the partial differentials and if the value of 𝑴′ is coming to be negative then the particle doesn’t exist and else we can find the mass converted and also the existence of that particle or matter of the universe. By this process, we can get the mass, the existence of matter/particle in this universe for that instance. We can use it if the energy is in the vector form and given some distance traveled in vacuum/air for some definite time we will get the desired result of mass.


2021 ◽  
Vol 10 (6) ◽  
pp. 3240-3248
Author(s):  
Darun Kesrarat ◽  
Vorapoj Patanavijit

This paper presents the use of the inverse confidential technique on bilateral function with the territorial intensity-based optical flow to prove the effectiveness in noise resistance environment. In general, the image’s motion vector is coded by the technique called optical flow where the sequences of the image are used to determine the motion vector. But, the accuracy rate of the motion vector is reduced when the source of image sequences is interfered by noises. This work proved that the inverse confidential technique on bilateral function can increase the percentage of accuracy in the motion vector determination by the territorial intensity-based optical flow under the noisy environment. We performed the testing with several kinds of non-Gaussian noises at several patterns of standard image sequences by analyzing the result of the motion vector in a form of the error vector magnitude (EVM) and compared it with several noise resistance techniques in territorial intensity-based optical flow method.


2021 ◽  
Vol 922 (2) ◽  
pp. L43
Author(s):  
Daniella C. Bardalez Gagliuffi ◽  
Jacqueline K. Faherty ◽  
Yiting Li ◽  
Timothy D. Brandt ◽  
Lauryn Williams ◽  
...  

Abstract In this Letter, we measure the full orbital architecture of the two-planet system around the nearby K0 dwarf 14 Herculis. 14 Her (HD 145675, HIP 79248) is a middle-aged ( 4.6 − 1.3 + 3.8 Gyr) K0 star with two eccentric giant planets identified in the literature from radial velocity (RV) variability and long-term trends. Using archival RV data from Keck/HIRES in concert with Gaia-Hipparcos acceleration in the proper motion vector for the star, we have disentangled the mass and inclination of the b planet to 9.1 − 1.1 + 1.0 M Jup and 32.7 − 3.2 + 5.3 degrees. Despite only partial phase coverage for the c planet’s orbit, we are able to constrain its mass and orbital parameters as well to 6.9 − 1.0 + 1.7 M Jup and 101 − 33 + 31 degrees. We find that coplanarity of the b and c orbits is strongly disfavored. Combined with the age of the system and the comparable masses of its planets, this suggests that planet–planet scattering may be responsible for the current configuration of the system.


MAUSAM ◽  
2021 ◽  
Vol 57 (3) ◽  
pp. 419-430
Author(s):  
S. K. ROY BHOWMIK ◽  
D. JOARDAR ◽  
ANANDA K. DAS ◽  
Y. V. RAMA RAO ◽  
H. R. HATWAR

lkj & 12 flrEcj 2002 ls ekSle foKku ds fy, lefiZr Hkkjr ds igys mixzg dYiuk-1 ds fØ;k’khy gksus ds lkFk gh fgan egklkxj ds vuqiyC/k vk¡dM+s okys {ks= ds mixzg ls izkIr iouksa ds vk¡dM+ksa ds {ks= foLrkj ls lq/kkj gqvk gS A bu vk¡dM+ksa ds miyC/k gks tkus ls Hkkjr ekSle foKku foHkkx ¼Hkk-ekS-fo-fo-½ dh izpkyukRed ,u- MCY;w- ih- iz.kkyh esa buds izHkko dh tk¡p djus dh ,d ubZ laHkkouk mRiUu gqbZ gS A bl ’kks/k Ik= esa o"kZ 2003 dh ekulwu o"kkZ ij fd, x, iz;ksxksa ds vk/kkj ij Hkkjr ekSle foKku foHkkx dh ,u- MCY;w- ih- iz.kkyh esa dYiyk-1 ls izkIr gq, lh- ,e- oh- vk¡dM+ksa ds izHkko ds ckjs esa crk;k x;k gS A bl fun’kZ ls izkIr gq, iou ds vfrfjDr vk¡dM+ksa dk izHkko lkFkZd vkSj ykHkdkjh ik;k x;k gS A  The coverage of satellite derived winds over the data gap Indian Ocean region has improved with the operation of India’s first dedicated satellite for meteorology KALPANA-1 since 12 September 2002. Availability of these data has opened up a new possibility to examine the impact of these data in the operational NWP system of India Meteorological Department (IMD). In this paper, impact of KALPANA-1 CMV  data in the  NWP  system  of IMD has been presented based on the experiments carried-out for the monsoon 2003.  The impact of additional wind data in the model is found to be significant and beneficial.


2021 ◽  
Vol 12 (2) ◽  
pp. 1005-1016
Author(s):  
Yanling Zhao ◽  
Enwen Zhou ◽  
Jingwei Zhang ◽  
Chunya Wu ◽  
Chuang Yang

Abstract. The working space of small motor stators is narrow, and most of them are manual winding. It is difficult to guarantee the uniform arrangement of enameled wires by multi-wire winding. To solve these problems, a three-phase parallel equivalent multi-wire winding robot is proposed to achieve large output torque of the motor. Firstly, according to the equivalent model, the structure of the large arm, small arm and manipulator is designed to determine the motion model of the winding robot. Euler's kinematics theory is used to analyze the change of the working position of the arm, and the rotation matrix of the arm and the constraint equation of the motion vector of each branch chain are established. The motion model of the arm and the manipulator are established using inverse kinematics and analytical analysis. The motion pose of each joint of the winding robot is studied to ensure that the robot realizes a three-phase parallel multi-wire winding motion. ADAMS software was used for kinematic simulation analysis of the winding robot. The displacement of the branch chain on the xyz axis was represented by the torque of the virtual motor to verify the correctness of the inverse kinematics solution and the closure condition of the manipulator block. Finally, the ROS simulation platform is built to simulate the joint motion planning of the winding robot to verify the multi-line parallel principle and the feasibility of the multi-line parallel winding hybrid robot. The research results of this paper provide a theoretical reference for multi-wire parallel winding equipment control.


Sign in / Sign up

Export Citation Format

Share Document