Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1177
Author(s):  
Zalizawati Abdullah ◽  
Farah Saleena Taip ◽  
Siti Mazlina Mustapa Kamal ◽  
Ribhan Zafira Abdul Rahman

The moisture content of a powder is a parameter crucial to be controlled in order to produce stable products with a long shelf life. Inferential control is the best solution to control the moisture content due to difficulty in measuring this variable online. In this study, fundamental and empirical approaches were used in designing the nonlinear model-based inferential control of moisture content of coconut milk powder that was produced from co-current spray dryer. A one-dimensional model with integration of reaction engineering approach (REA) model was used to represent the dynamic of the spray drying process. The empirical approach, i.e., nonlinear autoregressive with exogenous input (NARX) and neural network, was used to allow fast and accurate prediction of output response in inferential control. Minimal offset (<0.0003 kg/kg) of the responses at various set points indicate high accuracy of the neural network estimator. The nonlinear model-based inferential control was able to provide stable control response at wider process operating conditions and acceptable disturbance rejection. Nevertheless, the performance of the controller depends on the tuning rules used.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Marwan Ali Albahar

Software-defined networking (SDN) is a promising approach to networking that provides an abstraction layer for the physical network. This technology has the potential to decrease the networking costs and complexity within huge data centers. Although SDN offers flexibility, it has design flaws with regard to network security. To support the ongoing use of SDN, these flaws must be fixed using an integrated approach to improve overall network security. Therefore, in this paper, we propose a recurrent neural network (RNN) model based on a new regularization technique (RNN-SDR). This technique supports intrusion detection within SDNs. The purpose of regularization is to generalize the machine learning model enough for it to be performed optimally. Experiments on the KDD Cup 1999, NSL-KDD, and UNSW-NB15 datasets achieved accuracies of 99.5%, 97.39%, and 99.9%, respectively. The proposed RNN-SDR employs a minimum number of features when compared with other models. In addition, the experiments also validated that the RNN-SDR model does not significantly affect network performance in comparison with other options. Based on the analysis of the results of our experiments, we conclude that the RNN-SDR model is a promising approach for intrusion detection in SDN environments.


Sign in / Sign up

Export Citation Format

Share Document