Particle swarm optimization with an improved exploration-exploitation balance

Author(s):  
Mounir Ben Ghalia
2018 ◽  
Vol 6 (6) ◽  
pp. 346-356
Author(s):  
K. Lenin

This paper projects Volition Particle Swarm Optimization (VP) algorithm for solving optimal reactive power problem. Particle Swarm Optimization algorithm (PSO) has been hybridized with the Fish School Search (FSS) algorithm to improve the capability of the algorithm. FSS presents an operator, called as collective volition operator, which is capable to auto-regulate the exploration-exploitation trade-off during the algorithm execution. Since the PSO algorithm converges faster than FSS but cannot auto-adapt the granularity of the search, we believe the FSS volition operator can be applied to the PSO in order to mitigate this PSO weakness and improve the performance of the PSO for dynamic optimization problems. In order to evaluate the efficiency of the proposed Volition Particle Swarm Optimization (VP) algorithm, it has been tested in standard IEEE 30 bus test system and compared to other reported standard algorithms.  Simulation results show that Volition Particle Swarm Optimization (VP) algorithm is more efficient then other algorithms in reducing the real power losses with control variables are within the limits.


Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 29
Author(s):  
Haohao Zhou ◽  
Xiangzhi Wei

In this paper, we propose a particle swarm optimization variant based on a novel evaluation of diversity (PSO-ED). By a novel encoding of the sub-space of the search space and the hash table technique, the diversity of the swarm can be evaluated efficiently without any information compression. This paper proposes a notion of exploration degree based on the diversity of the swarm in the exploration, exploitation, and convergence states to characterize the degree of demand for the dispersion of the swarm. Further, a disturbance update mode is proposed to help the particles jump to the promising regions while reducing the cost of function evaluations for poor particles. The effectiveness of PSO-ED is validated on the CEC2015 test suite by comparison with seven popular PSO variants out of 12 benchmark functions; PSO-ED achieves six best results for both 10-D and 30-D.


Author(s):  
Alrijadjis . ◽  
Shenglin Mu ◽  
Shota Nakashima ◽  
Kanya Tanaka

Particle Swarm Optimization (PSO) has demonstrated great performance in various optimization problems. However, PSO has weaknesses, namely premature convergence and easy to get stuck or fall into local optima for complex multimodal problems. One of the causes of these weaknesses is unbalance between exploration and exploitation ability in PSO. This paper proposes a Modified Particle Swarm Optimization (MPSO) using nonlinearly decreased inertia weight called MPSO-NDW to improve the balance. The key idea of the proposed method is to control the period and decreasing rate of exploration-exploitation ability. The investigation with three famous benchmark functions shows that the accuracy, success rate, and convergence speed of the proposed MPSO-NDW is better than the common used PSO with linearly decreased inertia weight or called PSO-LDWKeywords: particle swarm optimization (PSO), premature convergence, local optima, exploration ability, exploitation ability.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory


2012 ◽  
Vol 3 (4) ◽  
pp. 1-4
Author(s):  
Diana D.C Diana D.C ◽  
◽  
Joy Vasantha Rani.S.P Joy Vasantha Rani.S.P ◽  
Nithya.T.R Nithya.T.R ◽  
Srimukhee.B Srimukhee.B

Sign in / Sign up

Export Citation Format

Share Document