Video Tracking System Using Midrange Exploration Exploitation Searching-Particle Swarm Optimization (MEESPSO) in handling occlusion and similar appearance due to crowded environment

Author(s):  
Nurul Izzatie Husna Fauzi ◽  
Zalili Musa ◽  
Nor Saradatul Akmar Zulkifli
2018 ◽  
Vol 6 (6) ◽  
pp. 346-356
Author(s):  
K. Lenin

This paper projects Volition Particle Swarm Optimization (VP) algorithm for solving optimal reactive power problem. Particle Swarm Optimization algorithm (PSO) has been hybridized with the Fish School Search (FSS) algorithm to improve the capability of the algorithm. FSS presents an operator, called as collective volition operator, which is capable to auto-regulate the exploration-exploitation trade-off during the algorithm execution. Since the PSO algorithm converges faster than FSS but cannot auto-adapt the granularity of the search, we believe the FSS volition operator can be applied to the PSO in order to mitigate this PSO weakness and improve the performance of the PSO for dynamic optimization problems. In order to evaluate the efficiency of the proposed Volition Particle Swarm Optimization (VP) algorithm, it has been tested in standard IEEE 30 bus test system and compared to other reported standard algorithms.  Simulation results show that Volition Particle Swarm Optimization (VP) algorithm is more efficient then other algorithms in reducing the real power losses with control variables are within the limits.


Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 29
Author(s):  
Haohao Zhou ◽  
Xiangzhi Wei

In this paper, we propose a particle swarm optimization variant based on a novel evaluation of diversity (PSO-ED). By a novel encoding of the sub-space of the search space and the hash table technique, the diversity of the swarm can be evaluated efficiently without any information compression. This paper proposes a notion of exploration degree based on the diversity of the swarm in the exploration, exploitation, and convergence states to characterize the degree of demand for the dispersion of the swarm. Further, a disturbance update mode is proposed to help the particles jump to the promising regions while reducing the cost of function evaluations for poor particles. The effectiveness of PSO-ED is validated on the CEC2015 test suite by comparison with seven popular PSO variants out of 12 benchmark functions; PSO-ED achieves six best results for both 10-D and 30-D.


Sign in / Sign up

Export Citation Format

Share Document