High spatial resolution mapping of water quality and bathymetry with a person-deployable, low cost autonomous underwater vehicle

OCEANS 2008 ◽  
2008 ◽  
Author(s):  
R. Ellison ◽  
D. Slocum
Author(s):  
Mamoon Masud ◽  
Suleman Mazhar

Abstract Indus river basin’s irrigation system in Pakistan is extremely complex, spanning over 90,000 km. Maintenance and monitoring of this extensive network demand enormous resources. This paper describes the development of a streamlined and low-cost autonomous underwater vehicle (AUV) for the monitoring of irrigation canals including water quality monitoring and water leak detection. The vehicle is a hoveringtype AUV, designed mainly for monitoring irrigation canals, with fully documented design and open source code. It has a length of 0.43 m, and a radius of 0.09 m with a depth rating of 4m. Multiple sensors have been installed onboard the AUV for monitoring water quality parameters including pH, turbidity, total dissolved solids, temperature, and electrical conductivity. A 9-DOF IMU, GY-85, is used, which incorporates an accelerometer, a gyroscope, and a magnetometer. The readings from these three sensors are fused together using direction cosine matrix algorithm, providing the AUV with the roll, pitch and yaw angles. A water pressure sensor, MS5837, gives the depth of the AUV. Four thrusters control the vehicle’s surge and heave, providing 3 DOF. The thrusters are controlled using a proportional-integral-derivative feedback control system, with IMU data and water depth being the controller’s input and the thruster’s speed as the output. The AUV is controlled by a single onboard processor, Arduino Mega 2560. A flow sensor has been installed beneath the main hull, for monitoring the changes in canal water flow and detecting potential water theft in the irrigation system. For recording underwater sounds, an indigenously developed hydrophone is placed on the AUV. The vehicle also provides information on water quality, providing the capability to identify the potential source(s) of water contamination. Detection of such events can provide useful policy inputs for improving irrigation efficiency and reducing water contamination. The AUV, being low cost and of small size, is suitable for autonomous maneuvering and water quality monitoring in the irrigation canals and can be used for monitoring irrigation networks at a large scale.


Coral Reefs ◽  
2021 ◽  
Author(s):  
E. Casoli ◽  
D. Ventura ◽  
G. Mancini ◽  
D. S. Pace ◽  
A. Belluscio ◽  
...  

AbstractCoralligenous reefs are characterized by large bathymetric and spatial distribution, as well as heterogeneity; in shallow environments, they develop mainly on vertical and sub-vertical rocky walls. Mainly diver-based techniques are carried out to gain detailed information on such habitats. Here, we propose a non-destructive and multi-purpose photo mosaicking method to study and monitor coralligenous reefs developing on vertical walls. High-pixel resolution images using three different commercial cameras were acquired on a 10 m2 reef, to compare the effectiveness of photomosaic method to the traditional photoquadrats technique in quantifying the coralligenous assemblage. Results showed very high spatial resolution and accuracy among the photomosaic acquired with different cameras and no significant differences with photoquadrats in assessing the assemblage composition. Despite the large difference in costs of each recording apparatus, little differences emerged from the assemblage characterization: through the analysis of the three photomosaics twelve taxa/morphological categories covered 97–99% of the sampled surface. Photo mosaicking represents a low-cost method that minimizes the time spent underwater by divers and capable of providing new opportunities for further studies on shallow coralligenous reefs.


Author(s):  
Benedetto Allotta ◽  
Roberto Conti ◽  
Riccardo Costanzi ◽  
Francesco Fanelli ◽  
Jonathan Gelli ◽  
...  

2009 ◽  
Vol 36 (1) ◽  
pp. 24-38 ◽  
Author(s):  
A. Alvarez ◽  
A. Caffaz ◽  
A. Caiti ◽  
G. Casalino ◽  
L. Gualdesi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document