plasmon resonances
Recently Published Documents


TOTAL DOCUMENTS

1013
(FIVE YEARS 225)

H-INDEX

85
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Weijie Jiang ◽  
Tao Chen

Abstract We design and propose a five-band absorber based on graphene metamaterial for the terahertz (THz) sensing field. The localized surface plasmon resonances (LSPR) of patterned graphene are excited, contributing to five tunable ultra-narrow absorption peaks, which are specified by the electric field distributions. Moreover, the absorber is insensitive to different polarization modes and incident angles. When increasing the Fermi level of the patterned graphene, which is composed of a round ring and a square ring connected by four thin wires, the resonant frequencies exhibit distinct blue shifts. For refractive index sensing, due to the addition of a continuous dielectric groove, the theoretical results show that the maximum averaged normalized sensitivity, Q factor, and FOM can reach 0.647 RIU-1 (refractive index unit, RIU), 355.94, and 215.25 RIU-1, indicating that the sensing performances are further enhanced compared with previous works. As a result, the proposed structure may provide a new method to realize ultrasensing in the THz region.


2022 ◽  
pp. 131-151
Author(s):  
Daniele Tosi ◽  
Marzhan Sypabekova ◽  
Aliya Bekmurzayeva ◽  
Carlo Molardi ◽  
Kanat Dukenbayev

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Edson P. Bellido ◽  
Isobel C. Bicket ◽  
Gianluigi A. Botton

Abstract In this work, we investigate the effects of bends on the surface plasmon resonances in nanowires (NWs) and isolated edges of planar structures using electron energy loss spectroscopy experiments and theoretical calculations. Previous work showed that the sharp bends in NWs do not affect their resonant modes. Here, we study previously overlooked effects and analyze systematically the evolution of resonant modes for several bending angles from 30° to 180°, showing that bending can have a significant effect on the plasmonic response of a nanostructure. In NWs, the modes can experience significant energy shifts that depend on the aspect ratio of the NW and can cause mode intersection and antinode bunching. We establish the relation between NW modes and edge modes and show that bending can even induce antinode splitting in edge modes. This work demonstrates that bends in plasmonic planar nanostructures can have a profound effect on their optical response and this must be accounted for in the design of optical devices.


2021 ◽  
Vol 130 (19) ◽  
pp. 193104
Author(s):  
Qi Zheng ◽  
Chenjiang Guo ◽  
Jun Ding ◽  
Peng Fei ◽  
Guy A. E. Vandenbosch

Nano Express ◽  
2021 ◽  
Author(s):  
Nilesh Kumar Pathak ◽  
Partha Sarathi

Abstract In the present study, the heat generation in gold nanodimers when irradiated at their localized surface plasmon resonances is investigated numerically. The theoretical calculations are performed employing the first principal approach to obtain the absorption cross-section of gold nanodimer for different parameter ranges. The heating mechanism is enumerated in terms of its temperature by solving the steady-state heat transfer equation which depends on the absorption cross-section and surface plasmon resonance wavelength. These surface plasmon resonances are quite sensitive to the distance between the dimer and have been tuned from visible to IR range by managing the distance between spheres from 0 to 6nm. The computation of normalized electric field distribution of gold nanodimer under the plasmon resonance has been mapped using boundary element method(BEM) which enables visualization of the local hot spot that plays a significant role in optical heating applications. The work furnishes the basic understanding of the heating mechanism of gold nanodimer which can find application as plasmonic nanoheaters in several branches of science in visible and near-infrared regions of the electromagnetic spectrum.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012044
Author(s):  
Almaz R Gazizov ◽  
Myakzyum Kh Salakhov ◽  
Sergey S Kharintsev

Abstract Anti-Stokes Raman scattering is one of the mechanisms that lie behind an optical refrigeration due to release of photons with greater energy than of incoming photons. To achieve a cooling regime the enhancement of anti-Stokes scattering is necessary, since spontaneous Stokes scattering dominates over anti-Stokes scattering under normal conditions. Here, we investigate the opportunity of enhancement of spontaneous anti-Stokes Raman scattering in defect-enriched carbon film by means of localized plasmon resonances. In our simulations, incoherence of Raman scattering results in excess of anti-Stokes intensity over Stokes one. However, when the field is localized within the phonon coherence volume (coherent regime), the anti-Stokes intensity is lower compared to Stokes one. The provided analysis shows that plasmon-enhanced anti-Stokes Raman scattering can be achieved in highly-defective carbon films. The results are beneficial for Raman-based temperature measurements on the nanoscale.


2021 ◽  
Vol 28 (11) ◽  
pp. 112102
Author(s):  
Amar P. Misra ◽  
Debjani Chatterjee ◽  
Gert Brodin

Sign in / Sign up

Export Citation Format

Share Document